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Abstract

Process languages, also known as process algebras or process calculi, are lan-
guages that are built up of distinct processes communicating with each other.
Different process languages have different constructs, but most of the prominent
ones have a common subset of constructs. That subset includes action prefix-
ing, parallel composition of subprocesses and non-deterministic choice between
paths.

The .NET platform is a popular development platform. One of its strengths is
that it supports multiple languages running on the same underlying virtual ma-
chine. The languages compile down to a common bytecode format which means
that the languages can interoperate and different parts of the same application
can be built in different languages.

This thesis explores how well process languages can be integrated into the .NET
environment and how they can interoperate with code written in other lan-
guages. The design and implementation of an extensible compiler back-end and
a runtime library for process languages are presented, as well as two case stud-
ies of languages implemented using the common compiler and runtime, and a
graphical tool to interact with running process language applications. Finally,
a quick overview is given of how to integrate a process language into a state-of-
the-art integrated development environment.
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Chapter 1

Introduction

In the last decade or so, programming languages have increasingly started to
target virtual machines instead of specific physical machine architectures. This
approach has a number of benefits. Many virtual machines have implementa-
tions on different machine architectures and operating systems, which enables an
application developer to write applications in a language that targets the virtual
machine and getting the benefit of his application running on multiple archi-
tectures and operating systems for free. Another benefit of virtual machines is
that code written in different languages can interoperate, allowing developers to
write each part of their application in the language best suited for the job. The
two most prominent virtual machines used today are the Java Virtual Machine
(JVM) and the Common Language Runtime (CLR). The JVM was originally
created by Sun Microtechnologies but several implementations are now avail-
able by many vendors. The CLR was created by Microsoft for the Windows
operating system, but an open source version, Mono, which works on Unix and
Linux operating systems is also available, which means that .NET can be used
to build cross-platform applications. Both the JVM and the CLR also have a
number of different programming languages that target them, so developers are
not tied to a particular programming language if they want to develop for the
virtual machines.

Process languages are a class of languages that are made up of distinct processes
communicating with each other. Some examples of process languages are Cal-
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culus of Communicating Systems (CCS), Communicating Sequential Processes
(CSP), π calculus and Kernel Language for Agents Interaction and Mobility
(KLAIM). The process languages mentioned here have a number of traits in
common, including action prefixing, non-deterministic choice and parallel com-
position. This leads to the assumption that maybe some of these traits can be
abstracted away into a common framework, so that each implementation of a
process language does not have to implement them separately.

Implementing a process language and having it target a popular virtual ma-
chine such as the CLR is an interesting proposition. A number of issues can
be explored. How well does the instruction set of the virtual machine fit the
execution model of the process language? Is there benefit in having access to
the large standard library that comes with the CLR? Is it feasible to write parts
of a process language application in another language that targets the virtual
machine, for instance numerical functions? A number of advanced tools and
integrated development environments exist for CLR and JVM languages, can
process languages make use of them?

1.1 Thesis Objectives

This thesis presents the design and implementation of the Process Language
Runtime, hereafter referred to as the PLR. The PLR consists of two main com-
ponents. First, it contains an extensible abstract syntax tree, which models
common idioms of process languages, and can compile itself to .NET bytecode.
Secondly, it contains a runtime library that is used by process applications that
have been compiled from the PLR syntax tree.

Integration with the .NET platform is also explored, e.g. how to allow pro-
cess language applications to call code developed in other .NET languages and
whether it is possible to use existing .NET development tools to aid in writing
process language applications.

A tool to interact with running process applications is also developed, this tool
has a graphical user interface and is meant to give more insight into what is
happening when a process language application is running and allow users to
select which paths are taken during execution.

Finally, the thesis presents two case studies of process language implementations
that were made using the PLR. The languages implemented were CCS (Calcu-
lus of Communicating Systems) and a subset of KLAIM (Kernel Language for
Agents Interaction and Mobility).
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The work carried out consists of the following parts:

• Design and implementation of the PLR abstract syntax tree and compiler,
including static analysis and compiler optimizations.

• Design and implementation of the runtime library.

• Implementation of the process language CCS.

• Implementation of the process language KLAIM.

• Design and implementation of a tool to interact with running process
language applications.

• Integration of the CCS language into Visual Studio, a state-of-the-art
integrated development environment for .NET development.

1.2 Thesis Outline

The thesis consists of nine chapters, of which this introduction is the first. The
rest are as follows:

Chapter 2 gives some background on process languages in general and their com-
mon properties, and some technical background on the .NET platform. The
concepts presented there are useful for understanding the architecture of the
PLR.
Chapter 3 describes the Process Language Runtime, both the syntax tree and
runtime library and shows how they are designed and implemented.
Chapter 4 describes the static analysis and optimizations that are performed
before compilation.
Chapter 5 is a case study of an implementation of the CCS process language.
Chapter 6 is another case study, this time of an implementation of the KLAIM
process language.
Chapter 7 is about the graphical tool Process Viewer and how it can be used to
interact with process language applications.
Chapter 8 gives an overview of how the CCS language was integrated into Visual
Studio 2008.
Finally, Chapter 9 contains concluding remarks and an exploration of related
work. Ideas for further development of the PLR are also discussed, including
how some other common process languages could potentially be implemented
using the PLR.
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In addition, there are two appendices:

Appendix A is about the practical aspects of the software developed during the
course of the project, where it can be downloaded, how it is licensed and how
it can be configured and run.
Appendix B shows a small CCS system and all the generated bytecode for it.



Chapter 2

Background

To fully understand the issues involved in creating the Process Language Run-
time a little background knowledge is required. First, process languages are
explained, their history, common properties and practical applications. Sec-
ondly, the .NET framework is presented and its technology explained.

2.1 Process Languages

2.1.1 Overview and history

Process languages, also known as process algebras or process calculi, are a family
of languages to formally model concurrent systems. These languages describe
the systems at a high level of abstraction, as interactions, communications, and
synchronizations between a collection of independent processes. This is typically
done using only a handful of constructs, many of which are shared between
different process languages, albeit with different concrete syntax. These common
constructs are explained further in Section 2.1.2. Some of the more prominent
process languages today include Calculus of Communicating Systems (CCS),
Communicating Sequential Processes (CSP), π-calculus and Kernel Language
for Agents Interaction and Mobility (KLAIM).
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Algebraic laws have been defined for these languages that allow process descrip-
tions or equations to be analyzed and manipulated, and permit formal reasoning
about equivalences between different processes, using for instance bi-simulation.
In this paper we do not focus on these algebraic properties but instead concern
ourselves with implementations of process algebras as programming languages.
For those interested, a good explanation of the algebra involved in one such
language, CCS, can be found in [1].

Two of the most important figures in the history of process algebras are Robert
Milner and C.A.R. Hoare. Milner published a number of papers [19, 20, 21]
throughout the 1970’s about concurrency and possible formal semantics for an-
alyzing concurrent systems. In 1980 he published [22] which introduced Calculus
of Communicating Systems. He continued working on concurrent systems and
in 1989 published [24] which introduced π-calculus, a successor to CCS. Hoare
started working on process algebras at a similar time and in 1978 published [16]
where he introduced Communicating Sequential Processes or CSP. These two
algebras, CCS and CSP, have become the basis on which much of the later work
in this field derives from. Both Milner and Hoare have continued working with
concurrent systems and have published a number of papers refining and further
extending CCS and CSP.

Practical applications of process algebra are many. They have been used to
model real world systems, verify absence of deadlocks and break cryptographic
protocols to name a few. They have also influenced a number of mainstream pro-
gramming languages. One example is the Erlang programming language. It was
developed by the Ericsson telecommunications company and its main strength is
concurrency. It has the notion of processes that communicate through message
passing, and the core language has been modelled in π-calculus [28]. Other ex-
amples are the occam programming language which builds on CSP, and occam-pi
[30] which incorporates ideas from both CSP and π-calculus.

2.1.2 Common constructs

The syntax for the common constructs varies between different process lan-
guages, in this section we shall use the syntax from Calculus of Communicating
Systems (CCS) to demonstrate the concepts behind the constructs.

Parallel composition is the key construct which separates process algebra
from sequential modes of computation. With parallel composition, two or more
processes can run independently of each other at the same time. Parallel compo-
sition is typically represented with the | character, so for two parallel processes,
P and Q, we write P | Q to indicate that they run in parallel.
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A nil process is a process that does nothing and cannot interact with any
other processes. It has different representations in different algebras, common
symbols for it include nil, 0 and STOP. The purpose of the nil process is to be
an anchor upon which more interesting processes can be generated. An usual
pattern is for a process is to first perform one or more actions and then turn
into the nil process, which signifies that the process has run its course.

Message passing through channels is the way processes interact with each
other. One process sends an outbound message on a particular named channel
and another process accepts a message on the same named channel.

Example 2.1

P def= coffee . 0

Q def= coffee . 0

In Example 2.1 above the process P listens on the coffee channel while process
Q sends on it. A process that is sending or receiving on a particular channel is
blocked until another process performs the opposite operation on the channel. A
synchronization happens between one sender and one receiver, if two processes
had been ready to receive on the coffee channel at the same time then one of
them would be chosen and the other would remain blocked. Channels are often
given descriptive names to indicate their purpose, we read the example above
as P receives coffee from Q. However, values can also be passed along channels,
and can then be bound to variables in the receiving process. An example of this
is shown in Example 2.2 below.

Example 2.2

Teacher def= grade(12) . 0

Student def= grade(x) . 0

In this example the Teacher process sends the value 12 on the grade channel.
The Student process receives the message on the channel and binds the value to
a variable x which can then be used in the continuation of the process.

Action prefixing is how sequential processes are built up. A process is prefixed
with an action, meaning that first an action is performed and then the process
continues as the prefixed process. The syntax for this is generally a dot between
the action and the following process. An example of action prefixing is a . P ,
here action a is performed and then the process continues as P. P itself could
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also be an action prefixed process, it is straightforward to see how this can be
expanded into a series of actions, e.g. a . b . c . P. The final process P could
either be the nil process or a process constant, which is further explained below.

Process constants are labels given to particular processes to identify them.
In Example 2.2 we saw two examples of process constants, Teacher and Stu-
dent. These constants can then be used in process descriptions to indicate that
a given process turns into another process. In Example 2.3 we see that a Cof-
feeMachine process first accepts a coin, then outputs a coffee and then turns
back into a CoffeeMachine process. This can be expanded into an endless series
of coin . coffee . coin . coffee . coin . coffee etc. Recursive process defini-
tions like these are used instead of looping constructs which process languages
generally do not have. Of course the CoffeeMachine process could just as well
have turned into any other process at the end, it does not have to only turn into
itself.

Example 2.3

CoffeeMachine def= coin . coffee . CoffeeMachine

Nondeterministic choice is a method for processes to choose between two
or more actions that the process can perform. The process is free to choose
arbitrarily which action to take. Example 2.4 shows how process P can perform
one of actions a, b or c. The choice is not made until at least one of the channels
has a corresponding process outputting on it that the choosing process can
synchronize with. There is no guarantee that the probability between choices is
fair, a recursive process might choose a every time, or might make each choice
exactly 33% of the time. An important thing to notice is that different paths
in a process language are never joined again. This, coupled with the fact that
process languages generally do not have loop structures, means that the control
flow graph for process languages is always a tree.

Example 2.4

P def= a . 0 + b . 0 + c . 0

Restriction hides channel events within a process from the outside world. This
can be used to simulate a machine that has internal workings which are re-
stricted, and a public interface which external processes can synchronize with.
Example 2.5 shows a process P that hides the channel a. That means that the
two parallel processes that P is composed of can only synchronize with each
other on the a channel, not with an outside process. The observable behaviour
of P is that it only outputs on the b channel and then terminates.
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Example 2.5

P def= (a . 0 | a . b . 0)

Re-labelling is a way to create general processes and make them more specific
by substituting their channel names with other channel names. Consider for
example the CoffeeMachine process in Example 2.3. We can see that this is
really a specific version of a vending machine. To enable re-use for different
types of vending machines we could create a generic VendingMachine process
that dispenses items, and create specific vending machines by re-labelling those
items to specific products. A re-worked example of a CoffeeMachine is shown in
Example 2.6 where item is re-labelled to coffee.

Example 2.6

VendingMachine def= coin . item . VendingMachine

CoffeeMachine def= VendingMachine[coffee/item]

One final thing that is important about both re-labelling and restriction is that
they keep applying to the process even as it invokes another process. In Ex-
ample 2.7 we see a process Proc that relabels the a channel to b. It eventually
turns into the AnotherProc process. The re-labelling of a to b still applies
to AnotherProc and any processes it might subsequently turn into. A process
turning into another process is essentially the same as substituting the process
itself for the process constant name. Following that rule we see that the process
Proc in Example 2.7 could also be written as Proc def= (a . (a . 0))[b/a] and
there it is obvious why the re-labelling applies to the invoked process.

Example 2.7

Proc def= (a . AnotherProc)[b/a]

AnotherProc def= (a . 0)

These were the main process language constructs, other less common constructs
will not be explained here. Some other constructs are however considered in
Section 9.2 about further work.
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2.2 The .NET Framework

2.2.1 Overview and history

The .NET Framework is a framework from Microsoft for writing software appli-
cations. It consists of a virtual machine that runs programs coded specifically
for the framework and a large standard library for application developers to
use when writing their applications. In addition, two programming languages
are included in the default distribution of the framework, C# and Visual Ba-
sic.NET. (A third language, J#, was included in earlier versions but has since
been dropped).

The original name for .NET was Next Generation Windows Services (NGWS)
and its development started in the late 1990’s at Microsoft. In late 2000 the
first beta versions of .NET 1.0 were released, and the first official version of
the .NET framework, 1.0, was released on February 13th, 2002. As of this
writing there have been five major releases of the framework, 1.0, 1.1, 2.0, 3.0
and 3.5. With each new version additional features have been added, but not
always in the way you would expect. The first three versions, 1.0, 1.1 and 2.0
all contained new versions of the virtual machine, new versions of the compiler
for the standard languages and additional libraries. However, version 3.0 of
the framework contained only new libraries but no new compilers and no new
version of the virtual machine. Version 3.5 then included new versions of C#
and Visual Basic.NET and some additional libraries, but again no change to the
virtual machine. As a result, the version numbers of the different components of
the framework have diverged so when we talk about version 3.5 of the framework,
that includes version 3.5 of the libraries, version 2.0 of the virtual machine and
version 3.0 of the C# language.

2.2.2 Common Language Infrastructure

The Common Language Infrastructure (CLI) is an open specification developed
by Microsoft that describes an executable code and runtime environment. This is
Microsoft’s specification of the .NET framework, but it has been published under
the ECMA-335 and ISO/IEC 23271 standars and so anyone is free to write their
own version that follows this specification. Two main alternate versions exist,
Mono and DotGNU. Both of these are released under open source licenses and
work on multiple operating systems, as opposed to Microsoft’s .NET which only
runs on the Windows family of operating systems. Microsoft has also released
a shared source reference implementation of the CLI specification. None of
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these other implementations fully implement all the class libraries of the original
.NET framework, and typically are about one version behind Microsoft’s .NET
framework.

The five main components described by the CLI specification are as follows:

1. The Common Type System (CTS): a set of types and operations that
are shared by all CLI-compliant programming languages.

2. Metadata: Any CLI language can access code written in any other CLI
language. To achieve this, information about program structure is lan-
guage agnostic.

3. Common Language Specification (CLS): A set of base rules to which
any language targeting the CLI should conform in order to interoperate
with other CLS-compliant languages. The CLS rules define a subset of
the Common Type System.

4. Virtual Execution System (VES): The VES is the component that
loads and executes CLI-compatible programs.

5. Common Intermediate Language (CIL): An intermediate language
that is abstracted away from the platform hardware. Upon execution, the
platform-specific VES will use a Just-in-time (JIT) compiler to compile
the CIL to hardware specific assembly language. Common Intermediate
Language is often referred to under the names MSIL (Microsoft Interme-
diate Language) or simply as .NET bytecode.

2.2.3 Languages

Two programming languages are included in the .NET default distribution.
Those are C# and Visual Basic.NET. C# derives its syntax from the C family
of languages, and in its first version was almost identical to the Java program-
ming language. Later versions have acquired a number of new features such as
lambdas, anonymous delegates and generators. In theory all .NET languages
are created equal; in practice C# is first among equals, and the entire standard
library is for instance written in C#.

Visual Basic.NET derives from the Basic family of languages. It has more
verbose syntax than C# and is the continuation of Microsoft’s Visual Basic 6
language. Visual Basic.NET has a number of differences from previous ver-
sion of Visual Basic though, mainly to fit into the .NET mold. To ease the
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transition from Visual Basic 6 to Visual Basic.NET, Microsoft included a num-
ber of old Visual Basic functions with the .NET framework in the namespace
Microsoft.VisualBasic.

In addition to these two main languages, there are dozens of other languages that
have implementations targeting .NET. These include well established languages
such as C++, Delphi, Lisp, Scheme, Smalltalk, Java (in J#), Python, Cobol,
Ruby and JavaScript as well as languages that have been built for .NET from
the start, such as F#, Nemerle and Boo.

2.2.4 Virtual machine

The virtual machine, of the .NET framework is named the Common Language
Runtime (CLR). It manages the runtime requirements of programs written for
.NET and frees the programmer from having to consider specific machine ar-
chitectures or CPU’s, as far as the programmer is concerned the CLR is the
(virtual) machine architecture that they are targeting. The CLR also provides
other runtime services such as security, exception handling and memory man-
agement. Of these, perhaps the most important service provided is memory
management, which frees the programmer from allocating and de-allocating
memory at runtime. Some of the most common programming errors in lan-
guages without memory management, such as C++, have to do with failing to
de-allocate memory and thereby causing memory leaks, or accessing memory in-
correctly which in turn causes segmentation faults. Programs written for .NET
eschew this class of errors completely1.

The CLR executes programs that have been compiled to the Common Interme-
diate Language (CIL). The CLR is a stack based virtual machine, which means
that it has an evaluation stack where the CIL bytecodes are evaluated. An il-
lustrative snippet of C# code and its corresponding CIL is shown in Figures 2.1
and 2.2. The CIL bytecodes generally fall into four categories:

1. Load items onto the stack. These include bytecodes to load integers,
floating point numbers, strings, object references, local variables or class
fields onto the evaluation stack. These bytecodes take one argument each,
the item to be loaded onto the stack.

2. Store stack items into variables/fields. These bytecodes take the top

1Although .NET programs do not cause memory leaks themselves, they may cause them
if they interact directly with other unmanaged code, such as making calls to the operating
system functions directly via P/Invoke
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item on the stack and store it in a local, global or class member variable.
They take one argument, which is a reference to the variable to store in.

3. Call functions. These take an argument, that is a reference to the func-
tion to call, and then call it with the parameters that are currently on the
evaluation stack.

4. Operate on stack items. These bytecodes usually do not take any
arguments, they simply use values on the stack and push results back
onto the stack. Examples of these are bytecodes that add, multiply or
divide the top two values on the stack and then push the result back onto
the stack.

At the time of execution, the CLR generates native code for the particular ma-
chine architecture that it is running on from the CIL bytecodes, this is referred
to as Just-in-time compiling, or JIT compiling. A more detailed explanation of
that process is outside the scope of this paper, but an overview can be found in
[6].

using System ;
namespace CodeGenDemo {

class Program {
stat ic void Main( string [ ] a rgs ) {

Console . WriteLine ( ” He l lo world” ) ;
}

}
}

Figure 2.1: C# Hello World program

.class private auto ansi beforefieldinit CodeGenDemo.Program
extends [mscorlib]System.Object

{
.method private hidebysig static void Main(string [] args) cil managed
{

.entrypoint
// Code size 20 (0x14)
.maxstack 8
IL_0000: nop
IL_0001: ldstr "Hello world"
IL_0006: call void [mscorlib]System.Console

:: WriteLine(string)
IL_0013: ret

} // end of method Program ::Main

Figure 2.2: C# Hello World program compiled to CIL
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2.3 Summary

Having some understanding of process algebra and its constructs and the .NET
framework is necessary to understand the architecture of the Process Language
Runtime. In this chapter we looked at the basic process algebra constructs that
are shared between multiple process algebras and are implemented in the PLR.
These are action prefixing, parallel composition, non-deterministic choice, re-
striction, relabelling and process invocations. The chapter also gave an overview
of the underlying technology of the .NET framework, the virtual machine, byte-
code format and its associated standards and specifications. In the following
chapter we will see how the process algebra constructs explained here are im-
plemented for the .NET virtual machine.



Chapter 3

Process Language Runtime

This chapter presents the design and implementation of the Process Language
Runtime, an extensible compiler backend and a runtime library for running
process languages on the .NET platform.

3.1 Inspiration

The inspiration for the Process Language Runtime comes from the Dynamic
Language Runtime [7] (DLR), a framework from Microsoft for developing dy-
namic languages on top of the Common Language Runtime. Since the .NET
Common Intermediate Language is statically typed it is ill-suited for dynamic
languages such as Python, Ruby or JavaScript. To clarify, statically typed lan-
guages are languages where the type of a variable is known at compile time and
the type of a variable never changes, while in a dynamically typed language a
single variable can contain objects of different types at different times during
program execution. The idea of having a common abstract syntax tree for differ-
ent languages comes from the DLR. However, the DLR was not directly used for
this project since its abstract syntax tree is mainly concerned with traditional
constructs for imperative programming languages and constructs to support dy-
namic typing, while the purpose of this project is to provide constructs common
to process languages, and dynamic typing is not a concern.
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3.2 Overview

The PLR is a single .NET assembly, named PLR.dll. This assembly contains the
abstract syntax tree and associated helper objects as well as all the classes used
at runtime. The PLR does not contain any lexer or parser and generally has no
notion of any concrete syntax. Creating a lexer and parser is the responsibility
of individual language implementations, the PLR takes over once an input file
has been parsed and used to construct a PLR abstract syntax tree.

It is important to note that the PLR does not, nor is it meant to, support all
constructs of all process languages. Creating a superset of all existing process
languages has never been the goal, instead the goal is to provide a common
subset of the most common constructs found in these languages and to make it
easy to extend with specific new constructs needed for specific languages. To
enable this, the classes and interfaces in the PLR have been engineered to make
them easy to subclass and implement.

As the PLR contains classes needed at runtime it must be distributed with any
compiled process language application. However, an option is present at the
compilation stage that allows the PLR assembly to be embedded in the final
compiled executable program, and can optionally embed any additional runtime
libraries that specific languages require. This allows a process language program
to be distributed as a single file without any external dependencies other than
the .NET framework itself.

The PLR is written in the C# programming language using Visual Studio 2008
as the development environment. It has a dependency on the NUnit unit test
framework, however this dependency is only needed when running internal unit
tests and so does not need to be distributed with the PLR assembly. The source
code for the PLR is licensed under the General Public License (GPL) v3.0.

3.3 Abstract Syntax Tree

The PLR abstract syntax tree is the component that generates CIL bytecode to
run a process language application. Once an abstract syntax tree has been con-
structed, a call to a Compile method on the tree’s root node with the appropriate
parameters will create an executable .NET assembly.
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3.3.1 Architecture

The architecture of the abstract syntax tree is based on Object Oriented princi-
ples, namely that an object contains data and methods to operate on that data.
As such, each node in the abstract syntax tree knows how to compile itself,
there is no compiler class, the whole syntax tree is the compiler. Every node in
the syntax tree inherits from an abstract Node base class which has an abstract
Compile method. Concrete node classes override the Compile method and in it
they emit the appropriate byte codes for the language construct that the node
represents.

The compilation itself is recursive, calling the Compile method on the root node
of the tree will cause it to call the Compile method of its child nodes, who
in turn call Compile on their child nodes and thus the compilation propagates
throughout the entire tree. The reason for choosing this architecture was to
make the syntax tree easily extendable by language implementers, who can add
new nodes to represent new constructs.

Concrete nodes typically do not inherit directly from the Node base class, instead
they inherit from one of five intermediate classes, Action, Process, Expression,
ActionRestrictions or PreProcessActions. Below is a short overview of what each
of these classes represents.

Action represents an action taken by the process. This can for instance be
sending on a channel, receiving on a channel or calling an arbitrary method.
Concrete descendants of this class typically have either no child nodes of their
own, or a list of Expression nodes, representing parameters to a method call or
values passed through a channel.

Process is the base class for processes. Its descendants include an ActionPrefix
class, a NonDeterministicChoice class and a ParallelComposition class. Implement-
ing a new language construct such as replication could be done be creating a new
descendant of this class. Child nodes of Process classes vary, the ActionPrefix
class for example has one Action child node representing the action about to be
performed and one Process child node representing the process that the current
process turns into after performing the action. Processes that are a composition
of other processes such as ParallelComposition and NonDeterministicChoice have
a list of other Process instances as childnodes.

Expression represents an expression such as an arithmetic expression, numeric
or string constant, a method call or the value of a variable. Expressions compile
in such a way that once they have been evaluated a single value, the result of the
expression, is at the top of the evaluation stack. This means that a node that
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has an expression as a child node can simply call the Compile method on the
expression and then emit bytecodes that operate on its result, without caring
whether the expression is a huge expression tree or a single constant value. An
example of this is the ArithmeticExpression node. In its Compile method it first
calls the Compile method of its left child, then its right child and then emits an
Add,Sub,Mul or Div bytecode. The child nodes of Expression nodes are invariably
Expression nodes themselves.

ActionRestrictions represents a function that restricts actions within a pro-
cess from synchronizing with other actions outside the process. This is an
implementation of the restriction process language construct described in Sec-
tion 2.1.2. It currently has two concrete descendants. One is ChannelRestrictions
which restricts channels by name, provided that the names of channels to re-
strict are known at compile time. The other is CustomRestrictions, that calls
a .NET method at runtime for every action and returns true it it should be
restricted. The method can be written in any language available for the .NET
framework, the only requirements are that it takes an IAction object from the
PLR runtime library as a parameter and returns a boolean value.

PreProcessActions represents a function that is called for every action that
is performed in a process and returns another action. This is used to implement
the re-labelling process language construct described in Section 2.1.2. Simple
re-labelling of channels with names known at compile time is done with a Rela-
belActions class. It has the names to re-label as child nodes and compiles down
to a method that takes in an IAction runtime class and performs simple string
substitution on its name. More complicated pre-processing of actions can be
achieved with another descendant class, CustomPreprocess. That class compiles
down to a method call to a .NET method that takes an IAction as a parameter
and returns an IAction as well. This method can be written in any language
available for .NET.

Besides all the descendant classes of those five main classes, there are a few
classes that inherit directly from the Node class. ProcessSystem is the root node
of the entire syntax tree and has a more complicated Compile method than
most other nodes, since it takes care of setting up the necessary context for the
compilation and creating the actual compiled file, giving it a name and so forth.
ProcessDefinition is a simple class that just has a Process child node and a name
for the process. Finally, ExpressionList is a convenience class to hold a list of
Expression instances.

We now look at a simple example of a coffee machine, CM. The coffee machine
accepts a coin as input, then outputs coffee and then makes a non deterministic
choice between turning into itself again or turning into a process representing
a failure of the coffee machine, CMFAIL. The CMFAIL process accepts a coin
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and then turns into the nil process without ever returning coffee for the inserted
coin.

Example 3.1

CM def= coin . coffee . (CM + CMFAIL)

CM def= coin . 0

The syntax tree for the processes in Example 3.1 is shown in Figure 3.1. The
names shown in boldface are the names of the node classes, while the text in
parentheses shows properties of the nodes. Note that although this particular
tree is strictly binary it does not mean that all PLR trees are binary trees. Pro-
cessSystem, ParallelComposition and NonDeterministicChoice nodes can all have
1-n child nodes.

Figure 3.1: PLR abstract syntax tree



20 Process Language Runtime

//Each node in the t r e e conta ins t h i s method
public override void Accept ( Abs t r a c tV i s i t o r v i s i t o r ) {

v i s i t o r . V i s i t ( this ) ;
}

//The V i s i t method f o r Act ionPre f i x node in a s u b c l a s s
// o f Ab s t r a c tV i s i t o r .
public override void Vi s i t ( Act ionPre f ix node ) {

// . . . p roces s the Act ionPre f i x node here
}

Figure 3.2: Examples of Visit and Accept methods

3.3.2 Processing the syntax tree before compilation

There are many reasons why a language implementation might need to process
the abstract syntax tree in some way before compilation. An example might be
optimization; to fold constant expressions or prune branches of the tree that are
sure to never be executed. To support scenarios like this, the PLR makes use
of the Visitor design pattern. The pattern is a way of separating an algorithm
from an object structure upon which it operates. As a result, new operations
can be added to existing object structures without modifying those structures.
A visitor interface contains one Visit method for each of the classes in the object
structure, each class in the object structure then contains an Accept method
that takes the visitor interface as a parameter and does nothing except call the
visitor’s Visit method with itself as a parameter. An example of this is shown in
Figure 3.2. This technique, calling the objects Visit methods that immediately
calls the visitors Accept methods is known as double dispatch. This essentially
mimics virtual method overloading, but the added benefit is that the methods
can be defined outside the object structure, making it easy to plug in different
implementations of the visitor as needed. The visitor class can then contain
different implementations of traversing the object structure while calling the
Accept method on each of its nodes. A more detailed explanation of the visitor
pattern and its benefits can be found in [11, 29].

The PLR contains an AbstractVisitor class which is the base class of all visi-
tor implementations. This was implemented as an abstract class rather than
an interface for convenience reasons; the AbstractVisitor provides empty imple-
mentations of the Visit method for each of the nodes in the abstract syntax
tree, subclasses only need to override the Visit methods for nodes which they
are interested in processing. Depth first traversal is a very common method of
working with tree structures, to account for that common case the AbstractVis-
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itor contains a VisitRecursive(Node node) method which performs a depth first
recursive traversal of the tree, calling each nodes Accept method along the way.
A boolean property on the AbstractVisitor named VisitParentBeforeChildren con-
trols whether the parent or child nodes Accept methods are called first during
the traversal.

Process algebras are the subject of many academic papers, and it is likely that
future users of the PLR might be in the process of writing research papers
themselves. For that reason it could be quite useful to be able to get a text
representation of the abstract syntax tree, formatted in the LaTeX typesetting
format (it certainly has been very useful for this author!). The PLR contains
three different formatter classes that generate text representations of the syntax
tree in different formats.

• BaseFormatter generates unformatted process algebra text, using the com-
mon symbols for constructs like non deterministic choice and parallel com-
position.

• LaTeXFormatter generates LaTeX source, suitable for copying directly into
a LaTeX document.

• HTMLFormatter generates HTML formatted text, suitable for displaying
on the web.

The concrete syntax used by all of these formatters is that of CCS, however,
since many of the common process algebras use the same symbols for things
such as parallel composition and non deterministic choice, formatters for other
languages could be implemented simply by inheriting from one of the three
aforementioned classes and overriding the formatting methods only for those
constructs whose syntax differs from CCS syntax.

The formatter classes are all implemented using the visitor pattern. The benefits
of the pattern here are obvious, it is easy to add new formats at a later date
without having to alter anything in the syntax tree itself, all code for a particular
format is kept in one place and formatter classes do not need to implement tree
traversal algorithms themselves. Another example of how formatters can be
useful is shown in Section 7.2.3.

Figure 3.3 shows another example of how the visitor pattern can be useful. It is
a class that takes binary expressions that contain constants on both the left and
right hand side, calculates their results and replaces the ArithmeticBinOpExpres-
sion node (which contains two child nodes) with a single Number node containing
the result of the expression. The code listing shows the entire ExpressionFolder
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class, all it needs to do is inherit from AbstractVisitor and override the Visit
method that takes ArithmeticBinOpExpression as a parameter. The visitor is ex-
ecuted by calling folder.VisitRecursive(tree) where folder is an instance
of ExpressionFolder and tree is any Node in the syntax tree, usually the root.
Note that the folding only happens if both the left and right node are Number
nodes, however, the fact that the tree is traversed depth first and child nodes
are visited before parent nodes ensures that even deeply nested expressions are
folded as much as possible. The leafs are visited first and folded if possible,
by the time the upper level nodes in the expression tree are visited they will
have Number nodes as children where previously were ArithmeticBinOpExpres-
sion nodes, and thus they can be replaced as well. (Of course this example is
fairly contrived, it is hard to think of a legitimate reason for writing down a
large expression where all elements are constants. It does however show how
the visitor pattern can be used to implement classes that alter the syntax tree
with a minimal amount of code).

class Express ionFolder : Abs t r a c tV i s i t o r {

public override void Vi s i t ( ArithmeticBinOpExpression exp ) {
i f ( exp . Le f t i s Number && exp . Right i s Number) {

int r e s u l t = 0 , l e f tVa l , r i ghtVa l ;
l e f tVa l = ( (Number) exp . Le f t ) . Value ;
r i ghtVa l = ( (Number) exp . Right ) . Value ;

i f ( exp .Op == ArithmeticBinOp . Plus ) {
r e s u l t = r ightVa l + l e f tVa l ;

} else i f ( exp .Op == ArithmeticBinOp . Minus ) {
r e s u l t = r ightVa l − l e f tVa l ;

} else i f ( exp .Op == ArithmeticBinOp . Mult ip ly ) {
r e s u l t = r ightVa l ∗ l e f tVa l ;

} else i f ( exp .Op == ArithmeticBinOp . Divide ) {
r e s u l t = r ightVa l / l e f tVa l ;

}
int pos = exp . Parent . ChildNodes . IndexOf ( exp ) ;
exp . Parent . ChildNodes [ pos ] = new Number( r e s u l t ) ;

}
}

}

Figure 3.3: Expression folder implemented using Visitor pattern
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3.3.3 Extensibility

As stated before, one of the goals of the PLR is extensibility, allowing for lan-
guage implementers to add features and constructs not included in the PLR
itself. There are three main methods of extending the PLR. Firstly, language
implementers can add new nodes to the abstract syntax tree. These nodes just
have to implement the Compile method and then they can be seamlessly inte-
grated with the built-in PLR nodes. Of course it is also possible to inherit from
one of the existing nodes and re-use some of the compilation work they do, and
simply add extra code before or after the base class’s compilation step.

Secondly, the root node of the abstract syntax tree, ProcessSystem exposes the
following four events.

1. BeforeCompile occurs before the PLR has performed any compilation. At
this point no types or methods exist yet.

2. AfterCompile occurs after the PLR has finished all its compilation but
before it creates the executable file. At this point subscribers to this event
can access any types or methods created during compilation.

3. MainMethodStart occurs just after the main method of the application has
been defined but before any bytecodes have been emitted into it. Sub-
scribers of this event can then inject their own bytecodes at the beginning
of the main method if they wish.

4. MainMethodEnd occurs after all bytecodes of the main method have been
emitted, except for the final Ret instruction. Again, subscribers of this
event can inject their own bytecodes at this point.

All these events have the same signature, they require a CompileEventHandler
delegate, which takes a CompileContext object as a parameter. The event sub-
scribers then use the compile context to create types, methods and emit byte-
codes at different points in the compilation process.

Finally, the third way to extend the PLR is to write supporting code in another
.NET language, writing a seperate runtime library. The KLAIM implementation
described in Chapter 6 takes this approach. When a language implementation
requires large amounts of supporting code it is inconvenient and error prone
to generate all that code by emitting CIL bytecode at compilation time. By
creating a runtime library instead, language implementers can get the benefit of
programming languages and tools such as C# and Visual Studio when writing
the common, re-usable parts of their languages. Then, at compilation time,
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they can simply emit bytecodes to call code in the runtime library. This is also
the approach taken by the PLR itself, which has runtime classes written in C#
and emits bytecodes during compilation that interact with these classes.

3.3.4 Code generation

To generate a valid .NET assembly the PLR uses a set of classes that are a part
of the .NET framework Base Class Library (BCL). These classes are located
in the System.Reflection.Emit namespace. Before explaining more about these
classes it is worth going over how a .NET assembly is structured. A .NET as-
sembly is an executable file (.exe) or a dynamic link library (.dll). The assembly
contains one more modules, typically just one. Each module contains one or
more types (or classes). Types have fields, constructors and methods. At the
lowest level, constructors and methods contain CIL bytecodes. Figure 3.4 shows
the structure.

Figure 3.4: The structure of a CIL assembly

The classes in the System.Reflection.Emit namespace match the structure of an
assembly. There is an AssemblyBuilder, ModuleBuilder, TypeBuilder, FieldBuilder,
ConstructorBuilder and a MethodBuilder. These are instantiated by giving them
names and other properties as parameters. The ConstructorBuilder and Method-
Builder have a GetILGenerator method that returns an object of type ILGenerator.
That object has direct access to the bytecode stream of the method being cre-
ated, and contains various overloads of an Emit method that emits bytecodes
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and their associated arguments. An OpCodes class contains constants for all
possible bytecodes that can be emitted by the ILGenerator.

The nodes of the syntax tree gain access to these classes through a CompileCon-
text class which is part of the PLR, and is a parameter to the Compile method
implemented by all nodes. The CompileContext class has a number of useful
properties that the nodes can access. It exposes the TypeBuilder object of the
type currently being built, the ILGenerator object of the method or constructor
being built and a symbol table for variables currently in scope. The node can
then emit its bytecodes, create new variables or otherwise alter the CompileCon-
text before passing it on to its child nodes Compile methods. Essentially this is
a form of distributed compiling, no one node has a complete picture of what is
being compiled, each node only has enough information to add its own code to
the correct type or method.

3.3.5 Debugging support

One of the benefits of targeting a common virtual machine such as the CLR
is is that both a free command line debugger and a free graphical debugger
exist that can be used for any programming language that compiles down to
the Common Intermediate Language format. The System.Reflection.Emit API
offers functionality to emit the necessary debugging symbols to be able to use
these debuggers. Emitting debug symbols consists of the following five steps:

1. When the ModuleBuilder objects is defined with a call to the DefineDy-
namicModule method on the AssemblyBuilder object, a parameter named
emitSymbols should be passed as true.

2. An item of the type ISymbolDocumentWriter needs to be defined. This
is done with a call to a DefineDocument method on the ModuleBuilder
object which returns a ISymbolDocumentWriter object. The parameters to
this method call include the name of the source file that is being compiled,
this is neccessary so that the debugger can prompt for the source file when
debugging the compiled file. The ISymbolDocumentWriter object is passed
with the CompileContext to all nodes during compilation.

3. Local variables in methods are created with a LocalBuilder object. In a non
debug build these locals are not stored by name in the compiled file, but
simply given a number and referred to by that number. To be able to map
variables in the compiled file to variable names in the source file a method,
SetLocalSymInfo, is called on the LocalBuilder object. The method takes
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the name of the variable as a parameter and stores that information for
later use by the debugger.

4. The method SetUserEntryPoint must be called on the ModuleBuilder object
to enable the debugger to know what the entry method of the assembly
is. The method takes a MethodBuilder object as a parameter.

5. The most important part of emitting the debug symbols is marking se-
quence points in the CIL bytestream. A sequence point is a point in the
bytecode that tells the debugger to stop at that point during code execu-
tion and highlight a particular section in the source code file. To be able
to do this the sequence point contains information about a start position
and end position in the source file, given as line and column numbers. A
sequence point is marked with a call to a MarkSequencePoint method on
an ILGenerator object, the methods parameters are an instance of ISymbol-
DocumentWriter and four integers, startLine, startColumn, endLine and
endColumn. Figure 3.5 shows a few lines of CIL bytecode interspersed
with sequence points. (Note: the CIL file format does not store sequence
points in exactly this manner, the figure is simply meant to clarify the
concept). It is worth noting that the CIL has no notion of statements, ex-
pressions or other programming language constructs, it is perfectly legal
to insert a sequence point in the middle of an expression or anywhere else
in the bytecode. It is completely up to the programmer to insert sequence
points at meaningful points in the bytestream according to the semantics
of the language being implemented.

The PLR handles these five steps, so an implementation of a language that
uses the PLR as its backend compiler does not need to concern itself with them
directly. However, since the PLR does not handle parsing of source files it can
not determine itself the line and column numbers needed for marking sequence
points. For that purpose, every node in the PLR abstract syntax tree has an
instance of a class named LexicalInfo. This class is simply a wrapper around
the four integers that a sequence point needs, startLine, startColumn, endLine
and endColumn. This information is easily available during parsing and so the
individual language parsers should store this information for each node. The
PLR will then automatically emit a sequence point before every action taken by
a process, as well as for expressions evaluated in if-then-else processes and
for process invocations.
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.method private hidebysig static void Main() cil managed
{

.entrypoint
// Code size 22 (0x16)
.maxstack 8
IL_0000: nop

// debugger stops , highlights line 12, col 9-36
[SEQUENCEPOINT (12, 9, 12, 36)]

IL_0001: ldstr "Hello"
IL_0006: call void Program :: WriteLine(string)
IL_000b: nop

// debugger stops , highlights line 13, col 9-26
[SEQUENCEPOINT (12, 9, 12, 36)]

IL_000c: ldc.i4.s 27
IL_000e: ldc.i4.4
IL_000f: call void Program ::Power(int32 , int32)
IL_0014: nop
IL_0015: ret

} // end of method Program ::Main

Figure 3.5: CIL bytecode with sequence points

3.4 Runtime Library

The PLR has a runtime library consisting of eleven classes. These classes reside
in the PLR.Runtime namespace. Applications compiled using the PLR must
have access to this library at runtime in order to execute successfully. Figure 3.6
shows a class diagram of the runtime library. Below is an overview of each of
the eleven classes.

ProcessBase is an abstract base class for any compiled processes. It contains
methods used to interact with the Scheduler, for instance method to synchronize
on channels, methods for startup and termination as well as methods to suspend
and resume the process thread. Since processes are built up into a tree-like
structure at runtime (further explained in Section 3.5.1) it also contains a field
for its parent ProcessBase instance. Finally, it contains a list of IAction instances,
this list will hold all actions that occur in the process instance or any of its
subprocesses and are restricted by the instances restriction clause.

BuiltIns is a small static class that contains utility methods that can be called
by processes, such as a method to print to the console.

IAction is an interface that all runtime actions must implement. It contains
four methods. ProcessID returns the id of the process performing the action,
IsAsynchronous returns true if the action can be executed without synchronizing
with another action, this applies for instance to arbitrary method calls to .NET
methods. CanSyncWith(IAction other) determines whether the action can be
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Figure 3.6: PLR runtime library classes

synced with another action, in the case of asynchronous actions this method
always returns false. Finally, Sync(IAction other) is called on those actions that
have been chosen for execution and is used for example to pass values from one
process to another through channels.
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IParser is an interface for parsers. It contains Parse methods for streams and
files, as well as properties that return the name of the process language the
parser is for, the file extensions it uses for source files, and a formatter class
that can format a PLR abstract syntax tree and print it out as source code in
a particular process language.

ChannelSyncAction is a class representing synchronization on a channel. It
contains the channel name, the id of the process performing the action and
information about whether the process is attempting to send or receive on the
channel. In the case of a send operation it can optionally contain a list of values
that are being sent, and in the case of a receive operation it can contain an empty
list which values can be copied to during synchronization. Variables are then
bound to these values. The ChannelSyncAction implements the IAction interface
as all runtime actions must, it is a synchronous action and its CanSyncWith
method will only return true for other ChannelSyncAction instance that have
the same channel name, are performing the opposing operation and have the
same number of values being passed through the channel. When two actions
are synchronized, the Sync(IAction other) method on both the actions are called
with the other actions as a parameter. In the case of channel synchronizations
the action instance which represents the receiving end of the operation will
copy the values from the sending action instance to itself. These values are then
available to the receiving process which can bind them to its variables. The
sending action will do nothing in its own Sync method, as it knows that the
receiving action will copy the values over.

MethodCallAction is a runtime action which can be used to call an arbitrary
.NET method, either a built-in method from the .NET base class library or a
method from any .NET assembly. It is an asynchronous action and as such does
not need to synchronize with another process to be executed. Currently the
PLR provides support for calling static methods that have integers or strings as
parameters. This allows for instance most of the methods from the System.Math
class to be accessible. To gain access to instance methods, for example the Nex-
tInt method of the System.Random class, it is necessary to write static wrappers
around the methods.

Logger is a utility class for handling process output to the screen. Its main
feature is assigning a different color to each process to easily distinguish between
them in the console output.

GlobalScope is a small class whose only purpose is to be a repository of possible
actions that are not restricted by any process. As explained in Section 3.5.1,
candidate actions are propagated up the process tree, and at each process it is
checked whether the process restricts them, if so they are stored within that
process so that they do not synchronize with actions outside the process. In the
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case where no process restricts the action and it can synchronize with any other
action that is not otherwise restricted then the action is stored in the global
scope, while it waits to see whether it was chosen for execution.

ProcessKilledException is an exception class used when processes are killed.
As an example, when a process is a candidate in non deterministic choice and
is not chosen then it must be killed. To bypass all the subsequent actions of the
process, a ProcessKilledException is thrown and then caught at the end of the
process’s code. There the process will unregister itself from the Scheduler, print
a message to the console and then terminate.

Scheduler is the real execution engine of the PLR. It follows the Singleton [11]
design pattern so it is trivial for all processes in the application to gain access to
the same Scheduler instance. When processes are activated they register them-
selves with the scheduler, which keeps a list of active processes. The scheduler
then monitors the processes and waits until all processes have generated all their
candidate actions and are waiting for an action to be executed so they can con-
tinue. At that point the scheduler goes through all the possible actions, figures
out which actions can sync with each other and then randomly chooses an action
to execute. It then executes the action and wakes up the processes involved in
the action so that they can resume execution. It also terminates certain pro-
cesses (or rather instructs them to terminate themselves). These are generally
candidates of non deterministic choice who were not chosen. Once the sched-
uler has finished one such round it again waits until all the processes it woke
up are again suspended and then chooses the next action to execute, and so on.
Figure 3.7 shows the workings of the scheduler in pseudocode. Other respon-
sibilities of the scheduler are thread locking and synchronization, and keeping
track of the trace, that is the list of actions executed during the duration of the
program.

CandidateAction is a simple data class used by the scheduler when it is se-
lecting an action to execute. It holds information about a particular action that
is ready for execution as well as references to the processes that will perform
the action.

3.5 CIL Structure of a Process Language Appli-
cation

A process language application is in many ways different from an application
written in a traditional programming language. One of the goals of this project
was to investigate how well process languages are suited to the .NET virtual
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// active_procs contains all the running processes

do forever:
all_blocked = true

for every process p in active_procs
if state(p) != STATE_BLOCKED

all_blocked = false

if all_blocked = true
//Find matches ...
candidate_matches = []
for every process p in active_procs:

//p.restricted_actions contains those actions
//being performed within p that are restricted
//by p and so can not go into the global_scope
//and sync with any other action
for every action a in p.restricted_actions

for every action b in p.restricted_actions
if a can sync with b

candidate_matches.add( (a,b) )

for every action x in global_scope
for every action y in global_scope

if x can sync with y
candidate_matches.add( (x,y) )

if length(candidate_matches) = 0
DEADLOCK , program finishes

else
set match = random(candidate_matches)
execute(match)
wake up processes that had actions in the match
kill processes that were not selected

in non deterministic choice

Figure 3.7: The scheduler algorithm
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machine. We now look at how a process language system looks once it has been
compiled to the Common Intermediate Language.

3.5.1 Architecture choices

One of the hardest decisions during the design of the PLR was whether or not
to represent each process as a separate thread. Writing multi-threaded code is
hard, and it is subject to subtle errors, race conditions and other problems that
are easily avoided when using only a single thread. However, a single threaded
implementation would be forced to represent the processes as datastructures,
rather than as independent programs in their own right. That approach, that
the processes are datastructures and the program is a single thread operating
on those datastructures is certainly worthwhile, and in fact an early prototype
was implemented as an interpreter that did just that. It even makes certain
things easier, such as the visualizing the state of the processes after each round.
However, using multiple threads allowed for compiling each process relatively
independently of other processes, and conceptually seemed closer to the seman-
tics of process algebra. Another benefit of the multi-threaded approach was
that it made emitting debug symbols fairly simple, while doing the same in a
single threaded way would have been problematic. For these reasons the multi-
threaded approach was taken.

Another concern when deciding how to structure a process language application
was the semantics of restriction and relabeling. When these are applied to
a process they keep applying to any subsequent process that it may invoke.
E.g. in (a.P )[d/c] the relabeling of c to d has to be applied to everything that
happens in the invoked process P . To handle this each process has a reference
to the process that spawned it in a Parent property. At runtime P would have
(a.P )[d/c] in its Parent property and whenever it performs an action it will first
check whether it restricts or relabels it itself, if not it will pass the action up
to its parent which can check again if the action is restricted at that level, and
and so it propagates up the chain of parent processes. If an action is restricted
at a particular level then it can only synchronize with other actions that are at
the same level, those actions that are not restricted at all go on up to the global
scope, where they become observable from the outside.

The one problem with that approach is that a lot of processes do not restrict or
relabel anything at all, and would then be kept alive for no reason, they would
simply take up memory and make the process tree unnecessarily complicated.
To avoid this, processes only set themselves as the parent of a spawned process
if they actually have some restrictions or relabellings. If they do not then they
set their own parent as the parent of their spawned processes. This is perhaps
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best explained by an example.

A = a . b . B
B = (b . c . C) \{b,c}
C = c . d . D
D = 0

In the system above the initial process is A. It performs two actions (another
process that synchronizes on these channels is omitted for clarity), and then
turns into B. A is not restricted in any way so there is no reason for it to set
itself as B’s parent. A then checks if itself has a parent, it does not and so it
sets B’s parent to null before starting it. B on the other hand is restricted, so
after it has performed its actions it starts C and sets itself as C’s parent. When
C performs its c action it is passed up to its parent and is restricted in the B
process. When C eventually turns into D it needs to decide what D’s parent
will be. C itself has no restrictions and so does not need to live on, so it sets
D’s parent as its own parent, which was B. C can now die and be removed
from memory, D has B as its parent so the restrictions of B will continue to be
applied correctly.

3.5.2 Processes

Each process in process algebra maps to a class in CIL. The process classes
all inherit from a ProcessBase class in the PLR runtime library and override a
RunProcess method. When a process has been instantiated, a Run method is
called on it, and it will then run the RunProcess method on a new thread.

The top level processes, those that are defined as named process constants, are
compiled to classes named after the process constant. A top level class can have
multiple inner classes however, and each of those can itself have multiple inner
classes. This happens for instance when a process starts by performing an action
and then turns into a process that is a parallel composition of other processes,
e.g. a . (b . 0 | c . 0). In that case each of those parallel processes is an inner class
of the original top level process. The same thing happens when a process makes
a non-deterministic choice; each of the choices is its own inner class. The reason
for making these inner classes was that in a fairly large system the number of
classes quickly becomes large, and instead of polluting the top level namespace
with dozens of generated class names, they are confined within their owning
process. It is also easier to understand what each process represents, the class
name PC+Parallel1 represents the first parallel process within the PC process,



34 Process Language Runtime

Figure 3.8: Assembly structure of process PC def= a . (b . 0 | c . 0)

which is a parallel composition process. Figure 3.8 shows the assembly structure
of a simple parallel composition process, PC def= a . (b . 0 | c . 0). (This is
a screenshot from a tool called ILDASM from Microsoft, the large boxes with
three pins represent classes, the triangles represent metadata about the classes
and the small rectangles represent methods).

The semantics of action prefixing (a . P ) state that action a is performed and
the process then behaves like P . Considering how parallel composition and
non deterministic choice were implemented with inner classes it might then
seem natural to perform a and then invoke an inner class P . That is not the
case however. The reason is that it is very common to have a list of actions
performed, e.g. a . b . c . d . P , and creating a new class after every single
action would result in a large number of classes for no purpose. So for a process
such as this, all the actions are performed in the same class, in its RunProcess
method. There are exceptions to this however, if a process performs some
actions and then becomes another action prefixed process that is restricted or
has relabellings then it will have an inner class at that point. For example the
process a . b . (c . P )\{c} will perform actions a and b in the main class, but
have an inner class for (c . P )\{c}. The reason for this is that restrictions and
relabellings always have process scope, and since the restriction on c does not
apply to the first actions a and b then a new process is needed after a and b
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Figure 3.9: Assembly structure of process AP def= a . b . (c . P )\{c}

have been performed. Figure 3.9 shows the assembly structure of the process
AP

def= a . b . (c . P )\{c}. Note that the class AP+Inner contains get Restrict
and RestrictByName methods, while the outer class AP does not.

Process invocations, that is when a process turns into a named process, is im-
plemented simply by creating a new instance of the named process and starting
it. The process c . Proc performs action c and then creates a new instance of
Proc and starts it, after that has been done c . Proc simply exits, Proc has been
started in its place. The only complication here is if a restriction or relabeling
is applied to Proc but not the rest of the process. If the process was written as
c . (Proc\{a}) then an inner class would be needed, whose only purpose was
to create a new instance of Proc and start it. This might seem a wasteful inner
class, but keep in mind that this restriction lives on and applies to everything
that happens in Proc and any other process that Proc might turn into. The
instance of Proc that is started will have a reference to the process (Proc)\{a}
in its Parent property, any action performed in Proc will be passed up along the
parent chain to see if it is restricted or relabeled at some point.

3.5.3 Restrictions and relabellings

Restrictions and relabellings map to methods in CIL. The methods do not have
to be member methods of a process class, there is an extra layer of indirection
to allow for calling methods in external assemblies. The ProcessBase class has
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Figure 3.10: Assembly structure of process RR def= (a . b . c . 0)[x/a,y/b]\{c}

two methods, get PreProcess and get Restrict 1. These methods return dele-
gates (otherwise known as function pointers) to a preprocess function (such as
a relabelling function) and a restriction function, respectively. The base class
versions of get PreProcess and get Restrict return function pointers to methods
that do not alter or restrict any actions. Concrete process classes can override
these methods and return function pointers to other methods, either methods
in the process class itself, or methods in some external assembly.

The PLR can compile simple restrictions and relabellings directly into the class
where they are used. (Simple meaning that they only use constant channel
names, like [a/b] or \{c, d}, and do not require any additional logic). Fig-
ure 3.10 shows the assembly structure of a simple restricted and relabeled pro-
cess, RR def= (a . b . c . 0)[x/a,y/b]\{c}. The restriction method is named
RestrictByName and the relabeling method is named RelabelAction. The base
class methods get Restrict and get PreProcess have then been overriden to return
function pointers to RestrictByName and RelabelAction, respectively.

3.5.4 Variables and scope

Variable scope becomes a bit tricky due to the possibly many inner classes of
a single process. A simple process like in(x) . (out(x) . 0)\{out} is actually

1The odd naming stems from the fact that these are defined as properties in the ProcessBase
class, where they are named Restrict and PreProcess. Properties in C# simply compile down
to getter and setter methods with get and set prefixed to the property name)
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two classes and the in and out actions are performed in different methods. The
variable x still needs to be passed on so that the inner process has access to the
value that was bound in the outer process. An additional complication is that
the process’s main logic has to be defined in an overridden method, RunProcess,
so changing the parameters of that method is not an option. And finally, a
variable may be bound and the process may then become two or more parallel
processes, each of which must have access to the variable. Consider the process
in(x).(left(x).0 | right(x).0). Both of the parallel processes use the variable
x, but an important thing to note is that they each have their own instance
of it. Changing it in one parallel process does not affect it in another. This
may seem counterintuitive, but consider if changing the variable in one process
did affect it in the other process, then we would have created a new method of
communication between processes, shared variables!

The PLR handles variables by passing them as parameters to the inner processes
constructor. The inner process then assigns each of the constructor parameters
to member variables. The PLR variables are either integers or strings, integers
are passed by value and strings are immutable, so there is no danger of two
processes changing the same value in memory. At the start of a process’s Run-
Process method, it defines local variables with the same names as its member
variables and assigns the member variables to local variables. This was done for
two reasons, it simplifies working with variables in the method since all variable
lookups are done on local variables (keep in mind that new local variables might
also be defined), and it helps during debugging, the debugger will display the
value of local variables when the mouse cursor hovers over their names.

A process may split into many processes and not all of them might need to use
all variables. As an optimization, the PLR examines the syntax tree during
compilation and only defines member variables and constructor parameters in
processes where it is possible that the variable will be used in the process. For
example, in the process

VAR def= in(x) . in(y) . (out(x) . 0 | out(y) . 0)

the main V AR process will define two local variables, x and y. The first parallel
process, out(x) . 0, will have a constructor with only one parameter, x and one
member variable x, the second parallel process, out(y) . 0, will only have y as a
member variable and constructor parameter.
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3.6 Summary

The Process Language Runtime is implemented as a .NET library, which con-
tains both the abstract syntax tree used during compilation as well as runtime
classes used during execution. The syntax tree is the most important part of the
PLR, it is a rich datastructure where each node knows how to compile itself and
emit the correct bytecodes. Debugging support is also provided by the PLR,
although individual language parsers must provide the PLR with information
about line and column numbers for the process constructs. Implementers of
process algebras can extend the PLR by creating additional syntax tree nodes,
subscribing to compilation events and writing their own runtime libraries. When
a process language system is compiled then individual processes become classes
in .NET, actions become method calls and restrictions and relabellings are im-
plemented as methods, with function pointers used as an abstraction to allow
for calling methods in external assemblies.



Chapter 4

Analysis and Optimization

In this chapter we look at the static analyses performed on the PLR abstract
syntax tree before compilation, these include some classical dataflow analyses as
well as some analyses that are more specific to the process algebra domain. The
results of these analyses can be used to optimize the compilation process, the
optimizations are presented and explained, and their implications for debugging
support are discussed.

4.1 Analysing process algebra

4.1.1 Traditional data flow analysis

Many of the most useful static analyses that compilers perform are based on data
flow analysis. For these types of analyses it is necessary to build up a control
flow graph of the program being analysed. The control flow graph shows which
program points lead directly to which other program points, in some cases the
reverse control flow graph is needed, which shows for a program point p what its
immediate predecessors are. The following snippet of typical imperative code is
an example:
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Example 4.1
1: y := 2
2: x := 1
3: while x < 6 do
4: x := x + 1

od
5: print x

In this example the program points are labelled from 1-5. Program points are
those points in the program where something happens, expression are evaluated,
variables are assigned, etc. The control flow for this example would be (1,2),
(2,3), (3,4), (3,5) and (4,3). The analysis is then typically performed by having
each program point have an input set and an output set, the input set represents
the state of the program as the point is reached and is based on the state of
its predecessors, the output set represents the state of the program after the
program point has been evaluated, and is based on the points input set with
some modifications based on what happened at the program point.

To give a concrete example suppose we have an analysis which is determining
for the code snippet in Example 4.1 which variables have been assigned at each
point in the program. For the program point labeled 2 (x := 1), its input set
would be {y} as y is the only variable that has been assigned at that point.
Since program point 2 assigns to the variable x then its output set would be
the union of its input set and {x}, or {x, y}. The functions used to modify the
input set to create the output set are commonly called Kill and Gen, the Kill
function removes items from the input set and the Gen function adds new items
to the output set. This can be shown as (for program point p):

poutput = pinput ∪ Gen(p) \ Kill(p)

To get the final result of the analysis these calculations must be repeated for each
point in the program until the input and output sets of each become stable. The
result is an approximation, either over approximation (something may happen
on the path to the program point) or an under approximation (something must
have happened on the path to the program point). To calculate the input and
output sets of each program point an iterative worklist algorithm is used. There
are many variations of these algorithms, they keep track of which program points
change and which other program points must then be re-calculated. There is a
lot more to data flow analysis than explained here, for instance whether output
sets of predecessors are combined using the union or intersection operator, and
what the initial content of the input sets are, but we will not go into more
detail on how data flow analysis generally works here, this is meant only as a
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brief introduction before explaining the analyses performed in the PLR. A more
formal introduction to the subject of data flow analysis can be found in [27].

4.1.2 Data flow analysis in process algebra

Two properties of process algebra make it different from imperative languages
when it comes to data flow analysis:

1. There are no looping constructs. The reason that data flow analysis on
imperative languages needs iterative worklist algorithms is because of loop-
ing. When looping is not a part of the language then the whole program
can be analyzed from top to bottom (or bottom to top) in one pass, each
program point only needs to be calculated once.

2. There are branches, but they are never re-joined later in the program.
This implies that at every point in the program is is possible to know
exactly what path was taken to get to that point. Note that this only
holds for forward analysis. Backwards analysis can be seen as multiple
branches joining, and so in a backward analysis it is not possible to know
at program point p from which branch a particular item in p’s input set
originates.

These two properties might not hold for all process algebras in existence, but
they certainly hold for both CCS and KLAIM, as well as some other prominent
algebras such as CSP, and they do simplify the implementation of these analyses
for process algebra. Sections 4.2.1 and 4.2.2 discuss one backward and one
forward data flow analysis and how they were implemented in an extensible way
for the PLR.

4.2 Analyses

The analyses presented here generally follow the same pattern. They implement
an IAnalysis interface and inherit from AbstractVisitor. They traverse the syntax
tree to analyze it and issue warnings about any anomalies found. In some cases
they mark certain syntax nodes as not being used, the compilation then uses
that information for optimization, for example to skip compiling certain things
that are guaranteed never to be executed. These optimizations can be turned
on and off in the compile options that are passed to the PLR. The optimizations
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and debugging support are mutually exclusive, this is due to the fact that the
sequence points in an optimized executable may not match the actual source
code file any longer, which could make the debugging rather confusing.

4.2.1 Live Variables

Live Variables Analysis is a classic data flow analysis. Its purpose is to identify
at each program point which variables are live, that is which variables will
be read later on in the program in the paths that follow the program point
in question. This is a backward analysis and is traditionally used to identify
assignments to variables that have no effect, for instance if the variable x is
assigned at program point p, but along all paths that follow p the variable is
either never read, or assigned to again before being read then the assignment at
p has no effect and can be eliminated. The analysis is an over-approximation,
we cannot safely eliminate the assignment to x if there may be a path after
p where x is read. This implies that the input set of p will be the union of
the output sets of its pre-decessors (here the pre-decessors actually mean the
program points that follow p as it is a backward analysis).

In the analysis of the PLR syntax tree, a process is considered a program point.
Additionally, syntax nodes that represent a process constant being defined are
considered program points, as they may contain defining occurrences of vari-
ables. For instance, in CS(x, y) def= a.0 we would consider CS(x, y) a program
point, since it defines the variables x and y, and it can be beneficial at that
point to know whether the initial value of those variables was ever used in the
process. We have two helper functions, assigned(x) takes in an action and re-
turns a set of the variables assigned in that action. An action in this case can be
the receiving of values through a channel or sending values through a channel.
The other helper function, read(x) takes in an expression and returns all vari-
ables evaluated in that expression, or takes in an action and returns all variables
evaluated in that action. Figure 4.1 shows some examples of the use of read and
assigned, Figure 4.2 shows how the Kill and Gen functions are defined for each
of the process types in the PLR syntax tree.

assigned(channel(x, y)) = {x, y}

read((channel(z + 1, a− b)) = {z, a, b}
read(x+ 1/z) = {x, z}

Figure 4.1: Examples of the read and assigned functions
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Kill(a.P ) = assigned(a)
Gen(a.P ) = read(a)

Kill(P | Q) = ∅
Gen(P | Q) = ∅

Kill(P +Q) = ∅
Gen(P +Q) = ∅

Kill(0) = ∅
Gen(0) = ∅

Kill(if bexp then P else Q) = ∅
Gen(if bexp then P else Q) = read(bexp)

(process definitions)
Kill(K(x, y, z) def= ) = {x, y, z}
Gen(K(x, y, z) def= ) = ∅

(process invocations)
Kill(K(exp1, ..., expn)) = ∅
Gen(K(exp1, ..., expn)) = read(exp1) ∪ ... ∪ read(expn)

Figure 4.2: Kill and Gen functions for Live Variables

The actual implementation of the assigned() and read() functions is done with
two properties that are present on all syntax nodes that derive from either
Process or Action. These properties are AssignedVariables and ReadVariables and
return the assigned and read variables of a process or action. Having these
as properties of the syntax nodes instead of as part of the implementation of
the analysis allows for greater extensibility. Languages implemented using the
PLR that have their own custom syntax nodes simply need to override these
properties and can then use the analysis without further modifications. This is
the case in the KLAIM implementation discussed in Chapter 6, it has its own
custom actions and a custom process type and they simply implement these
properties.

Constructing the flow graph is trivial, since there are no loops or joining branches.
In fact, a special flow graph is not constructed, instead the PLR syntax tree is
used directly. To make it simpler, each Process node is required to implement
a FlowsTo property which is a list of all the processes it can flow to. For an
if-else process these are the if and else branches, for parallel composition
these are the composed processes, etc. In addition each node in the syntax tree
has a Parent property which references its parent and can be used as a reverse
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flow graph. Again, having these properties directly on the syntax tree is useful
so that additional process types can be added without having to modify the
analysis code. The input and output sets are stored in a a Tag property which
is also on each syntax node, this is a generic object reference which analyses
may use to temporarily store data associated with each node.

Instead of an iterative worklist algorithm the analysis itself uses the visitor
pattern discussed in Section 3.3.2. It simply inherits from AbstractVisitor and
overrides the Visit(Process p) method which ensures that it will be called for
every node in the syntax tree that inherits from Process. The visitor does a
depth-first recursive traversal of the syntax tree, the Visit is called on child
nodes before parent nodes so whenever we are processing a process p we know
that all its child nodes have already been processed. What is needed in the
method itself is then:

1. Construct the input set of p by joining the output sets of all the processes
in its FlowsTo property.

2. Check whether any variable x in p.AssignedVariables is not in p’s input set.
If it is not, then the assignment at p has no effect and a warning is issued,
and an IsUsed property on x is set to false. This can be used later for
optimization during compilation.

3. Construct the output set of p by taking the input set and removing all
variables that are in p.AssignedVariables and then adding all variables that
are in p.ReadVariables.

Once the analysis has been performed a number of warnings have been issued
and all assignments to variables that have no effect have been marked as not
used. In some cases it may be needed to assign to a variable that is never used
because the interface of another process requires it. For instance, one process
may send a value on channel ch, another process may wish to synchronize but
does not care about the value sent. In that case the variable that is bound
during the synchronization can be named notused and then no warnings will
be issued.

During the compilation stage the PLR will look at every variable that is assigned
and check whether its IsUsed property is set to false. If the assignment is never
used then no bytecode is emitted to store a value in the variable and no variable
is declared. If the assignment is unused because another assignment is made
before the variable is read, then the variable is defined at that point instead of
the original point. Due to the way the PLR is constructed this may save one
or more processes from having that variable as a field or a local variable, thus
reducing the size of the compiled executable.
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4.2.2 Reaching Definitions

Reaching Definitions is another classic data flow analysis. Its purpose is to
identify which assignments may reach a given point in a program.

Example 4.2
1: x := 1
2: x := 2
3: print x

In the example above the assignment at line 2 reaches line 3. The assignment at
line 1 reaches line 2 but not 3, since x is assigned again at line 2. So at line 3 we
know that the value of x is that which was assigned at line 2. With branching
and re-joining branches there may be more than one definition of a particular
variable that reach a certain point, for example when a variable is assigned in
both branches of an if-then-else statement. However since this is a forward
analysis and the PLR does not have re-joining branches this cannot happen in
the PLR’s implementation of this analysis.

Reaching Definitions analysis can be used for many common compiler optimiza-
tions, such as constant propagation and common subexpression elimination.
However in the PLR it is used for only one thing, to detect the use of unas-
signed variables. Once the analysis has been performed it is possible to examine
each program point p and see whether all variables read at p have entries in p’s
input set. If a variable x is evaluated at p and does not exist in p’s input set,
then there is no definition of x that reaches p and it is being used before being
assigned. The Kill and Gen functions are shown in Figure 4.3. Since the assign-
ment to variable x defined at one point in the program is not the same as the
assignment to variable x defined at another place in the program the function
named() is used. Kill(a.P ) = (named(assigned(a))) means to remove all the
variables from the set which are named the same as those that were assigned in
a, whereas for the Gen we have Gen(a.P ) = assigned(a) which means to add
the exact variables occuring in a to the set.

The implementation of Reaching Definitions is similar to that of Live Variables.
An analysis class inherits from AbstractVisitor and overrides its Visit(Process p)
method. Since this is a forward analysis the traversal is a little different than in
Live Variables. Here, the property VisitParentBeforeChildren is set to true on the
AbstractVisitor. This makes sure that the tree can be processed in forward order
instead of backward. Then, in the method the following steps are performed:

1. Check the input set of p against the property p.ReadVariables. If there
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Kill(a.P ) = named(assigned(a))
Gen(a.P ) = assigned(a)

Kill(P | Q) = ∅
Gen(P | Q) = ∅

Kill(P +Q) = ∅
Gen(P +Q) = ∅

Kill(0) = ∅
Gen(0) = ∅

Kill(if bexp then P else Q) = ∅
Gen(if bexp then P else Q) = ∅

(process definitions)
Kill(K(x, y, z) def= ) = named(x, y, z)
Gen(K(x, y, z) def= ) = {x, y, z}

(process invocations)
Kill(K(exp1, ..., expn)) = ∅
Gen(K(exp1, ..., expn)) = ∅

Figure 4.3: Kill and Gen functions for Reaching Definitions

exists a variable in p.ReadVariables that has no entry in p’s input set then
it is being used before assignment and a warning is issued.

2. Create the input set of each process Pi in p.FlowsTo by taking the input
set of p and adding all variables from p.AssignedVariables, replacing any
previous entries for the same variable.

After the analysis has run the PLR checks whether it produced any warnings.
If it did then an error message to that effect is printed to the screen and the
compilation is aborted.

4.2.3 Constant Expressions

A simple optimization that can be performed is to calculate the expressions
that can be fully evaluated at compile time and replace them with a constant
with the result of the calculation. Granted, it is unlikely that large expressions
can be computed at compile time, unless some constant propagation is also
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performed, but it is nevertheless useful to compute those simple ones that can.
The implementation is simple (and was partially shown in Figure 3.3), simply
subclass an AbstractVisitor and override a Visit method for each of the binary
expression nodes (arithmetic, relational and logical). Check if both the left and
right childnodes are constants, if they are then calculate the result according to
the operator stored in the binary node. Finally replace the binary node with a
new constant node that carries the result of the computation. The same goes
for the unary minus node.

The one extra thing that this analysis does is that it also visits the BranchPro-
cess node, which is the implementation of the if-then-else statement. If the
boolean expression in the BranchProcess has been fully computed then the anal-
ysis will set the IsUsed flag to false on the branch that will never been chosen,
according to the result of the boolean expression. During the compilation stage,
if optimizations are turned on, the PLR will then replace the BranchProcess
with the branch that is guaranteed to be taken and only compile that branch.

4.2.4 Nil Process Warnings

Nil Process Warnings is a simple analysis which looks for nil processes in places
where they are useless and can be eliminated. This includes nil processes that
are part of parallel composition (P | 0 ≡ P ) and nil processes that are an option
in non deterministic choice (in P + 0 the nil process will never be selected).
This is implemented as a visitor that visits all NilProcess nodes, checks whether
their parent nodes are ParallelComposition or NonDeterministicChoice. If they
are, then a warning is issued and the property IsUsed on the nil process nodes
is set to false, which allows the compilation to skip those processes.

The analysis also checks for process definitions that are defined as nothing more
than the nil process (e.g. P def= 0) and issues a warning that states that any
process invocation of P can be replaced with a nil process.

4.2.5 Unmatched Channels

When a process tries to synchronize on a channel that no other process anywhere
in the application ever synchronizes on then that process will be blocked forever.
That scenario is not hard to detect manually in a small system, however once
the system grows it becomes increasingly harder, especially when we factor in
that a channel can be relabeled multiple times.
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To attempt to detect these synchronizations which will never complete, the PLR
contains an analysis named Unmatched Channels. It begins by collecting the
channel names of all InAction and OutAction instances in the system. It then
collects all the relabellings that can occur (although it does not take into account
relabeling that is done by custom .NET methods). Every variation of channel
names that are possible are then created using the relabellings, this is done on
a global scale without consideration for whether the relabeling has a chance of
actually being applied to a particular channel. Once all the variations have been
created the input channels are compared to the output channels, and if there
is an input channel that has no corresponding output channel, or vice versa,
then a warning is issued that the process will block forever should it attempt to
synchronize on that channel.

Actions can only be child nodes of ActionPrefix nodes, if an action is guaranteed
to block forever, its parent ActionPrefix node is gotten and the process that
follows the action has its IsUsed property set to false. This allows the PLR to
skip compiling the following process entirely, as it is guaranteed never to run.

Clearly this analysis is an imprecise approximation of the problem itself. There
could be channels that block that the analysis does not detect, because it has
found a relabeling that causes it to believe that the channel can synchronize,
even if the relabeling actually has no chance of being applied to that particular
channel. Even so, the analysis does detect problems in process algebra sys-
tems, and is useful for example when channel names or relabellings have been
mistyped.

It would be interesting to further refine this analysis, for example by traversing
through the tree and figuring out exactly which relabeling could potentially
be applied to which channels. Another possible refinement would be to detect
cases such as P = (ch.0 + ch.0). Here the input and output channel both exist,
however since they are part of the same nondeterministic choice only one of
them can be chosen and so they will never synchronize with each other.

4.2.6 Unused Processes

Unused Processes is an analysis that traverses the syntax tree and collects the
names of all defined processes, as well as all instances where processes are in-
voked. It then proceeds to check whether all defined processes are invoked at
least once. If a process is never invoked a warning is issued to that effect, and
if optimizations are turned on the unused process is never compiled at the com-
pilation stage, giving some space savings in the compiled executable. This is
a simple optimization but can give significant space savings if large processes
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are unused. Of course if the compiled assembly is supposed to be used by an-
other assembly then this optimization should not be used, as the analysis cannot
detect whether outside callers intend to use a specific process.

4.3 Summary

The Process Language Runtime contains a number of analyses and optimiza-
tions that are performed before and during compilation. These analyses are
somewhat different from analyses of imperative programming languages since
process algebra has a simpler control flow graph which is always a tree. The
analyses find assignments to variables that are never used, variables that are
read before being assigned to, constant expressions, nil processes that have no
effect, synchronizations that can never happen and processes that are never
used. The optimizations that can be performed as a result of these analyses
are mainly focused on removing code that either has no effect or can never be
executed.
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Chapter 5

CCS Implementation

In this chapter we look at the Calculus of Communicating System process lan-
guage, its history, formal syntax and semantics, and its implementation with
the PLR as the back-end compiler.

5.1 Overview

CCS was created by Robin Milner in the 1970’s where it was the subject of a
number of papers [19, 20, 21] and finally a book of the same name [22] published
in 1980. It is, along with CSP, one of the oldest process algebras, but is still
widely taught in university courses about concurrent systems and is the language
of choice in textbooks on concurrent systems such as [1].

In its pure form the language is fairly simple and contains fewer constructs than
some of the other process algebras which came after it. This makes it an ideal
candidate to use as the blueprint for the PLR. The PLR and the CCS compiler
were developed in parallel and the PLR provides all the constructs that CCS
needs. Because of that the CCS compiler itself is fairly small and mostly has
to do with the front-end, that is the lexer and parser. A description of another
language implementation, one that extends the PLR further, is the subject of
Chapter 6.



52 CCS Implementation

5.2 Syntax and semantics

The version of CCS defined here is equivalent to the one defined in [1], other
variants sometimes have slightly different syntax (e.g. use nil instead of 0). The
language can be described by the following syntax

• Let A be the set of channel names, we use α as a typical member of this
set in demonstrations.

• A := {a | a ∈ A} denotes the set of co-names. For each channel name
there is a corresponding co-name. Channel name represents input, co-
name represents output.

• Let L := A ∪A be the set of labels.

• Act := L∪ τ is the set of actions, where τ denotes the silent (or unobserv-
able) action.

• Let K be a set of process identifiers.

• The set P of process expressions is defined by the following syntax:

P ::= 0 (Nil process)
| α . P (Action prefixing)
| K (Invoking a process)
| P | Q (Parallel composition)
| P + Q (Nondeterministic choice)
| P [f ] (Relabelling)
| P \ L (Restriction)

where

– P,Q are processes in P
– α is an action in Act

– K is a process name from K
– f : Act → Act is a relabelling function satisfying the constraints
f(τ) = τ and f(a) = f(a) for each label a.

– L is a set of labels from L

• We assume that the behavior of each process name K ∈ K is given by a
defining equation

K
def= P
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where P ∈ P.

To avoid the use of too many parantheses in writing CCS expressions the con-
vention is used that operators have decreasing binding strength in the following
order: restriction and relabelling (the tightest binding), action prefixing, paral-
lel composition and summation. For example, the expression a.0 | b.P \ L+ c.0
stands for

((a.0) | (b.(P \ L))) + (c.0)

For an informal description of each of the constructs (action-prefixing, parallel
composition, non-deterministic choice, restriction and relabelling) we refer to
Section 2.1.2 where such a description was given. For a formal description,
Figure 5.1 shows the structural operational semantics of CCS.

5.3 Value passing CCS

The syntax and semantics given in Section 5.2 above are those for so-called
pure CCS, in which communication is pure synchronization and involves no
exchange of data. A more practical approach would be to allow processes to send
and receive data when communicating on channels, this is a great convenience
when modelling certain types of processes. R. Milner, the originator of CCS
introduced an extension to CCS in [23], value-passing CCS. In the same book he
proved that while the extension was convenient, it was theoretically unnecessary.
Value-passing CCS introduced three main things which contribute to efficently
modelling systems that handle data.

1. Data can be sent and received through channels during synchronization.
On the receiving end the data is bound to a variable name. Below we see
the value 5 being passed from process Q to process P through the channel
a.

Example 5.1

P def= a(x) . 0

Q def= a(5) . 0
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ACT
α.P

α→ P

SUMj

Pj
α→ P ′j∑

i∈I Pi
α→ P ′j

where j ∈ I

COM1
P

α→ P ′

P | Q α→ P ′ | Q

COM2
Q

α→ Q′

P | Q α→ P | Q′

COM3
P

α→ P ′ Q
α→ Q′

P | Q τ→ P ′ | Q′

RES
P

α→ P ′

P \ L α→ P ′ \ L
where α, α /∈ L

REL
P

α→ P ′

P [f ]
f(α)→ P ′[f ]

CON
P

α→ P ′

K
α→ P ′

where K def= P

Figure 5.1: CCS structural operational semantics

The output action can contain variable names, constant values or arith-
metic expressions, e.g. a(x+ y/4). The input action can only contain
variable names to bind to the incoming value(s).

2. Process constants can be parameterized. When a process turns into a pa-
rameterized process, it passes a value to that process, which in turn binds
the value to the variables specified in the process definition. Example 5.2
shows a process P that syncs on channel a, then turns into process Q and
passes it the value 4. When process Q starts it has the value 4 bound to
the name x and tries to pass that to some other process through the b
channel.
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INP
a(x).P

a(n)→ P [n/x]

OUTP
a(e).P

a(n)→ P
n is the result of evaluating e.

COND1
P

α→ P ′

if bexp then P else Q α→ P ′
bexp is true

COND2
Q

α→ Q′

if bexp then P else Q α→ Q′
bexp is false

PCONST
P [v1/x1, ..., vn/xn] α→ P ′

A(e1, ..., en) α→ P ′
A(x1, ..., xn) def= P and each ei has value vi

Figure 5.2: Value-passing CCS structural operational semantics

Example 5.2

P def= a . Q(4)

Q(x) def= b(x) . 0

3. A conditional expression is introduced into the language. It takes the
form if bexp then P else Q. Example 5.3 shows a process P which
checks whether the value of variable x is less than 2, if so it turns into
process Q, otherwise it turns into the nil process and terminates.

Example 5.3

P(x) def= if x < 2 then Q else 0

The structural operational semantics for these additions to the language are
given in Figure 5.2.
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5.4 Implementation

The CCS implementation was written in C# using Visual Studio 2008 as the
development environment. It implements both pure and value-passing CCS, it
is allowed but not necessary to pass values when synchronizing on channels.
Since the PLR includes abstract syntax tree nodes for all constructs of CCS, no
additional nodes were created specifically for the CCS implementation. There
are only a handful of classes used, below is a short summary of each one.

5.4.1 Class overview

• Program is the entry point into the compiler. It contains a Main method
that parses command line parameters, validates parameters such as input
and output file names and then creates a Parser object. It then calls
the parser’s Parse method, receives a PLR ProcessSystem node and calls
Compile on it.

• Scanner is the lexer class whose responsibility it is to tokenize a CCS source
code file into valid CCS terminals. Figure 5.3 shows the more complicated
terminals of CCS defined by regular expressions. The simpler terminals,
who are just string constants, are given directly in quotes in the parser
definition. The scanner is implemented as a finite state automaton.

• Parser is a recursive-descent parser for CCS. It uses the tokens generated
by Scanner and applies a number of productions to recognize the language.
The Extended Backus-Naur Form (EBNF) of the productions is given in
Figure 5.4. The parser constructs a PLR abstract syntax tree as it parses,
if the parsing is without errors the syntax tree can then be compiled. Both
the Parser and Scanner are generated by the parser generator Coco/R [25].
It takes as input an EBNF specification of the language interspersed with
C# source code and from that it generates the Scanner and Parser classes.

• ParserService is a simple class that implements the PLR’s IParser interface
to make the parser discoverable from outside the assembly. It implements
the interface’s methods and delegates the actual parsing to the Parser class.

• ParserTest contains unit tests for the parser and scanner, to be run with
the NUnit unit testing framework.
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PROCNAME = [A-Z][A-Za -z0 -9]*
LCASEIDENT = [a-z][A-Za-z0 -9]*
CLASSNAME = [A-Z][A-Za-z0 -9]*(\\.[A-Z][A-Za-z0 -9]*)*
OUTACTION = _[a-z][A-Za -z0 -9]*_
METHOD = :[a-zA-Z][A-Za -z0 -9]*
NUMBER = [0-9]+
STRING = "[^"]*" ’

Figure 5.3: Terminals of CCS scanner

5.4.2 Extensions to CCS syntax

Section 5.2 shows the formal syntax for CCS, it however does not account for
integrating with the .NET environment to allow arbitrary method calls to be
made as actions and .NET methods to be used as relabelling functions and/or
restriction functions. The EBNF specification for the parser which shows all
allowed syntax can be seen in Figure 5.4, but to quickly summarize the changes
from formal CCS, they are as follows:

• A CCS source code file can start with one or more use statements, which
consist of the token use followed by the fully qualified name of a .NET
class. E.g.

use System.Console

These referenced classes can be in the .NET core library, mscorlib, or
in any arbitrary .NET assembly. During compilation the filenames of
assemblies containing classes used in the source code must be passed to
the compiler so that it knows where to look for classnames found in use
statements.

• Actions can be calls to .NET methods in addition to synchronization and
value passing on channels. A .NET method call consists of a colon fol-
lowed by the method name and parantheses around expressions passed as
parameters to the method, e.g.

P = :Print("Hello world") . 0

At compile time the PLR resolves which class the method belongs to by
looking at the classes imported with use statements and inspecting their
methods. If more than one imported class has a candidate method an
exception is thrown. The methods must be static, if instance methods are
to be used it is necessary to write a static wrapper method around them
that creates an instance of the object in question and calls the instance
method.
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CCS = { ClassImport } ProcessDefinition { ProcessDefinition }

ClassImport = "use" CLASSNAME

ProcessDefinition =
PROCNAME [ "(" LCASEIDENT {"," LCASEIDENT } ")" ] "=" Process

Process = NonDeterministicChoice

NonDeterministicChoice = ParallelComposition { "+" ParallelComposition }

ParallelComposition = ActionPrefix { "|" ActionPrefix } .

ActionPrefix =
{ Action "." }
(

"(" Process ")"
| "0"
| ProcessConstantInvoke
| BranchProcess

)
[ Relabelling ]
[ Restriction ]

BranchProcess = "if" Expression "then" Process "else" Process .

ProcessConstantInvoke =
PROCNAME [ "(" ArithmeticExpression {"," ArithmeticExpression } ")" ]

Action =
LCASEIDENT [ "(" LCASEIDENT { "," LCASEIDENT } ")" ]
| OUTACTION [ "(" ArithmeticExpression { "," ArithmeticExpression } ")" ]
| METHOD "(" [ CallParam { "," CallParam } ")"

CallParam = ArithmeticExpression | STRING

Relabelling =
"[" METHOD "]"
| "[" LCASEIDENT "/" LCASEIDENT { "," LCASEIDENT "/" LCASEIDENT } "]"

Restriction =
"\"
(

LCASEIDENT
| "{" LCASEIDENT {"," LCASEIDENT } "}"
| METHOD

)

Expression = OrTerm { "or" OrTerm }

OrTerm = AndTerm { "and" AndTerm }

AndTerm = RelationalTerm { "xor" RelationalTerm }

RelationalTerm =
ArithmeticExpression [ ("=="|"!="|" >"|" >="|" <"|" <=") ArithmeticExpression ]

ArithmeticExpression = PlusMinusTerm { ("+" | "-") PlusMinusTerm }

PlusMinusTerm = UnaryMinusTerm { ("*"|"/"|"\%") UnaryMinusTerm }

UnaryMinusTerm =
[ "-" ]
(

"(" ArithmeticExpression ")"
| NUMBER
| "0"
| "true"
| "false"
| LCASEIDENT

)

Figure 5.4: EBNF Productions of CCS parser
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• Relabelling functions can be specified as .NET methods in addition to
being constant replacements. To use a .NET method for relabelling, the
methods name prefixed with a colon is put inside the square brackets that
usually define relabelling functions in CCS, e.g. [:MyRelabelMethod].
The method is resolved to an imported class at compile time and is re-
quired to be a method that takes a single parameter, an instance of the
IAction interface from the PLR runtime library.

• Restrictions functions can be specified as .NET methods in much the same
way as relabelling functions and must resolve to a method that takes an
IAction instance as a parameter. An example of a process which uses a
.NET method for restriction could be (a . 0) \ :MyRestrict.

5.5 CCS example system

To get a better understanding of what CCS can be used for and how all the parts
discussed previously fit together we now look at a larger example. Figures 5.5
and 5.6 show a model of an automatic teller machine, an ATM. The example
is written in CCS source code which is slightly different from the formal CCS
syntax used in the previous examples. The main differences is that output
on channels is represented as a channel name surrounded by underscores, e.g.
channel instead of with an overline, channel. Other changes from the formal

syntax are trivial and will become obvious when looking at the example.

The example uses most of the features of the CCS implementation, we now
look further at each of the processes in the example system and discuss the
noteworthy aspects of their implementation.

• Example is the root process. The first process in a CCS file is always
considered the root process and the only one that is instantiated at the
beginning of a program. Its responsibility is to start up other processes in
the system, and it does that by becoming a parallel composition of John
which is a customer and ATM which represents the ATM machine.

• The ATM is the ATM machine itself. We see that it does not do much
by itself, instead it is composed of three component processes running in
parallel. They are the UI process which is the interface to the user, the
Bank and a CashDispenser component. The ATM uses restriction to hide
a number of internal events of these component processes, so that the
customer cannot directly synchronize with them.
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• The Bank process is made up of components as well, these are the Accounts
process and the PinCheck process which run in parallel.

• Customer is a parameterized process with parameters for card number,
pin number and amount to withdraw from the ATM. John is simply an
instantiation of the Customer process with specific values for these param-
eters. The Customer process uses non deterministic choice to handle error
conditions, such as the pin number being incorrect, the ATM being empty
or the bank account not having sufficient funds for the withdrawal. Since
the ATM will only offer one synchronization at any point the customer
will have to take the path dictated by the ATM, e.g. after entering the
pin the ATM might output on wrongpin, which forces the customer to
accept that since it cannot perform the withdraw synchronization if the
ATM does not allow it. Generally the successful path is the first path in
each choice, and the following paths represent error messages. Another
thing to notice is that the Customer process uses the built in function

use PLR.Runtime.BuiltIns

use Bank.Functions

Example = John | ATM

ATM = (UI | Bank | CashDispenser) \{checkpin , validpin , invalidpin ,

accwithdraw , accwithdrawn ,

accnotenoughbalance ,

checkavailablecash , enoughcash ,

notenoughcash ,dispensecash}

Bank = PinCheck | Accounts

John = Customer (1234, 3321, 20000)

Customer(cardnr , pinnr , amount) =

_card_(cardnr) . _pin_(pinnr) .

(

_withdraw_(amount) .

(

cash(received) . card . :Print(" Successful withdrawal ") .0

+

notenoughmoney . card . :Print("Not enough balance ") . 0

+

atmempty . card . :Print ("ATM is empty") . 0

)

+

wrongpin . card . :Print ("Wrong pin number ") . 0

)

Figure 5.5: ATM system example in CCS, part 1
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UI = card(cardnr) . pin(pinnr) . _checkpin_(cardnr ,pinnr) .

(

validpin . withdraw(amount) . _checkavailablecash_(amount) .

(

enoughcash . _accwithdraw_(cardnr ,amount) .

(

accwithdrawn . _dispensecash_(amount) . _card_ . UI

+

accnotenoughbalance . _notenoughmoney_ . 0

)

+

notenoughcash . _atmempty_ . _card_ . UI

)

+

invalidpin . _wrongpin_ . _card_ . UI

)

CashDispenser =

Dispenser (100000)[ cash/output , checkavailablecash/check ,

enoughcash/enough , notenoughcash/notenough ,

dispensecash/dispense]

Dispenser(available) =

check(nr)

. if available < nr then

_notenough_ . Dispenser(available)

else

_enough_ . Dispenser(available)

|

dispense(nr) . _output_(nr) . Dispenser(available -nr)

PinCheck = checkpin(cardnr , pin)

. if :ValidPin(cardnr , pin) then

_validpin_ . PinCheck

else

_invalidpin_ . PinCheck

Accounts = accwithdraw(account , amount)

. if :WithDrawFromAccount(account , amount) then

_accwithdrawn_ . Accounts

else

_accnotenoughbalance_ . Accounts

Figure 5.6: ATM system example in CCS, part 2

:Print to print to the screen how the transaction went. If the transaction
is successful the customer gets cash, if not he is notified of one of the error
conditions, which are wrongpin, notenoughmoney or atmempty.
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• The interface process, UI interacts with the customer as well as the Bank
and CashDispenser. It accepts the inputs from the customer, first checks
the cash dispenser to see if there is enough cash to pay out, then attempts
to withdraw from the bank and notify the cash dispenser that it may pay
out the requested amount. Like Customer, it uses non-deterministic choice
to handle the possible errors. It also abstracts away from the underlying
events, instead of allowing the customer to directly get a invalidpin event,
it synchronizes with that event itself and offers the customer a wrongpin
event instead. This implies that the mechanism that the UI interacts with
could be changed but the UI could still offer the same interface to the
outside.

• The Dispenser process is a generic dispenser, it takes a parameter that
states how many items are available and then offers a check event which
takes in a number and then offers either an enough event or a notenough
event. It also offers a dispense event where it takes in the number of
items to dispense, output’s that number and becomes the Dispenser process
again, only with the number of available items reduced by the number that
was just output.

• CashDispenser is a specialized form of the general Dispenser process. It
uses re-labelling to indicate that the items in the dispenser are in fact
cash, and re-labels the other events as notenoughcash, enoughcash and
dispensecash. This shows how a generic process can be used as a base for
a more specific one.

• Finally there are the two component processes of the bank, they are
PinCheck and Accounts. They are similar in that they use .NET methods
to check whether the operation they are performing is sucessful and then
offer different events based on the outcome of the method call. PinCheck
calls a :ValidPin method which takes in the pin number and card nr and
returns true if they go together, it then offers the validpin event to notify
the UI of this. Accounts attempts to directly call a :WithDrawFromAccount
method to withdraw the requested amount, the method call returns true
if the withdrawal was sucessful, otherwise false. It then signals this
back to UI with events. These processes show how .NET integration can
be used, the methods they call are defined in the class Bank.Functions
which was imported at the top of the file, and is written in C#. For this
example those methods simply return true, they could however check a
database, call web services or do whatever else .NET programs can do
before returning their result.
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5.6 Summary

The CCS compiler is a fully working command line tool which supports both
pure and value-passing CCS. In this chapter we looked at the CCS language
itself, its syntax, semantics and value-passing extensions, and finally the im-
plementation details of the compiler and how it interacts with the PLR. More
practical aspects of the CCS compiler (command line parameters, where to
download, license etc.) can be found in Appendix A and Chapter 8 describes
how the compiler can be fully integrated into an integrated development envi-
ronment.
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Chapter 6

KLAIM Implementation

In this chapter we look at the second language implemented using the PLR, the
Kernel Language for Agents Interaction and Mobility, or KLAIM. Unlike the
CCS implementation, the PLR does not contain all the constructs needed for
an implementation of KLAIM, so this chapter is a case study in how the PLR
can be extended for use with other languages than CCS.

6.1 Overview

KLAIM is a language introduced in 1998 in [26], it’s main purpose is to model
mobile agents in a distributed environment. It derives many of its constructs
from process algebra, but it is also heavily influenced by Linda [5, 12], a dis-
tributed computing solution from which it borrows the concept of tuplespaces. A
tuplespace is a collection of tuples of data, these tuples can be read and removed
from the tuplespace or new tuples can be added to it. Selecting tuples to read
is done by means of pattern matching. In KLAIM, processes run in different
localities, each of which contains zero or more processes and its own tuplespace.
The actions performed by the processes input, output and read tuples of data
from these tuplespaces. Unlike CCS, where processes synchronized with each
other through channels, in KLAIM the way processes communicate is strictly
by adding and retrieving data from tuple spaces of different localities.
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The concept of data stores (or tuplespaces) and actions which operate on them is
something that is not built into the PLR. KLAIM does however contain many
constructs which are a part of the PLR, namely parallel composition, non-
deterministic choice and action prefixing (albeit with different types of actions
than those built into the PLR). It also contains a fairly common process algebra
construct which is not part of the PLR, replication. These additional features
make KLAIM an ideal candidate to use as a test of how easily the PLR can be
extended to accommodate other languages than CCS.

6.1.1 The implemented subset of KLAIM

The implementation of KLAIM described in this chapter is only for a subset of
the full language. In particular the in, out and read actions are implemented
while the eval and newloc actions are not. The implementation also does
not support process constants, processes are defined directly in the net and so
cannot turn into other processes. The subset of KLAIM implemented here is
the same as that described in [14, 2], both of which are projects developed at
the Technical University of Denmark that focus on an aspect-oriented version of
KLAIM. Section 6.2 only shows syntax and semantic for the subset being used,
for a description of the full KLAIM language we refer to [26].

KLAIMS stated purpose is to be a programming language for programming
mobile agents in a distributed environment. However in this implementation
all processes in the system are running on the same computer, and in the same
operating system process. The distributed part of it is purely conceptual. As
such, this implementation can be seen more as a simulation of how KLAIM
works rather than an implementation ready to be used for actual applications.
Examples of other implementations of KLAIM are given in the next section.

6.1.2 Other implementations of KLAIM

Noteworthy implementations of KLAIM include KLAVA[4], which is a Java
library representing the KLAIM constructs as Java classes, and X-Klaim [3], a
compiler for a superset of KLAIM whose output is Java source code that uses
the KLAVA library. A different approach is taken in [2] where a virtual machine
is developed specifically for AspectK, an aspect-oriented version of KLAIM. A
further explanation of these implementations and a comparison with the PLR
is given in Section 9.1.
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6.2 Syntax and semantics

6.2.1 Syntax

A KLAIM net is made up of located processes and located tuples. We use N for
a net and the composition of nodes of the net is given with the || operator. We
use P and Q for processes and a for actions. x is used as a generic variable name,
!x represents the binding of a value to variable x and e represents an arithmetic
expression. l is a locality constant while ` can refer to either a locality constant
or a variable. t represents a tuple of elements, which can be constants, variables
and variable bindings. Located tuples are written as l :: 〈t〉 and located pro-
cesses as l :: P . Parallel composition and non-deterministic choice is represented
the same way as in CCS, with | and + respectively. The replication construct is
represented by an asterisk, ∗, immediately preceding a process. Action prefixing
is written as a.P , and the nil process as nil. Papers on KLAIM traditionally
allow the omission of the nil at the end of a process term and so does this imple-
mentation, out(t)@l.in(t)@l is equivalent to out(t)@l.in(t)@l.nil. Figure 6.1
shows an overview of the syntax.

6.2.2 Structural Congruence

Figure 6.2 shows the structural congruence of net composition, parallel compo-
sition and replication. The most interesting thing here for the implementation
is that all processes located at the same locality should be treated as a paral-
lel composition process. The replication construct also poses some interesting
challenges since effectively there can be endless instances of a replicated pro-
cess. Obviously this is unfeasible for implementation so some solution needs to
be worked out that simulates this.

6.2.3 Semantics

Since KLAIM has actions that are quite different from those of CCS, we now
look closer at those actions. As stated before the operations implemented are
in, out and read. The reaction semantics for these operations are shown in
Figure 6.3, below is an informal description with examples.

The out operation adds a tuple to the tuplespace of a particular locality. The op-
eration out(John, Sally)@BusStop adds the tuple 〈John, Sally〉 to the tuplespace
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N ::= N1 || N2 (Net composition)
| l :: 〈t〉 (Located tuple)
| l :: P (Located process)

P ::= nil (Nil process)
| a.P (Action prefixing)
| P | Q (Parallel composition)
| P +Q (Nondeterministic choice)
| ∗P (Replication)

a ::= out(t)@` (Add tuple to the ` tuple space)
| in(t)@` (Remove tuple from the ` tuple space)
| read(t)@` (Read tuple from the ` tuple space)

t ::= e (Expression)
| ` (Locality constant or variable)
| x (Variable)
| !x (The binding of variable x)
| t1, t2 (Sequence of tuple elements)

Figure 6.1: KLAIM Nets and processes syntax

at the BusStop locality. The out operation is asynchronous and can never block.
This is a big difference from the synchronization actions of CCS which are al-
ways dependent on other processes. A KLAIM process composed entirely of out
actions can run all the way through without ever stopping because of something
other processes are doing.

The in operation removes a tuple from a particular locality’s tuplespace if it
matches a certain template. The template is a tuple which can contain constants,
variables and variable bindings. For example the operation in(John, !other)@BusStop
will look in the BusStop locality’s tuplespace for a matching tuple, and if it finds
one it will be removed and a value bound to the other variable. The details of
matching of templates to tuples is further explained in Section 6.2.4. One in
operation only removes one tuple, if more than one tuple match the pattern then
one of them is randomly selected. If no matching tuple exists at the tuplespace
the operation will block until one becomes available.

The read operation is very similar to the in operation; essentially it behaves
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l :: P1 | P2 ≡ l :: P1 || l :: P2 l :: ∗P ≡ l :: P | ∗P

N1 ≡ N2

N || N1 ≡ N || N2

Figure 6.2: KLAIM Structural Congruence.

l1 :: out(t)@l2.P → l1 :: P || l2 :: 〈t〉
l1 :: in(t)@l2.P || l2 :: 〈t′〉 → l1 :: Pθ if match(t; t′) = θ

l1 :: read(t)@l2.P || l2 :: 〈t′〉 → l1 :: Pθ || l2 :: 〈t′〉 if match(t; t′) = θ

N1 → N ′
1

N1 || N2 → N ′
1 || N2

N ≡ N ′ N ′ → N ′′ N ′′ ≡ N ′′′

N → N ′′′

Figure 6.3: KLAIM Reaction Semantics (on closed nets).

exactly the same way, except that it does not remove a matching tuple, it just
binds values to variables.

6.2.4 Pattern matching against tuples

Figure 6.4 shows the match function used by both the in and read operations.
Essentially it works by selecting a tuple from the tuplespace that fulfills these
conditions:

1. The template tuple t contains the same number of elements as the candi-
date tuple t′ from the tuplespace.

2. In every index position i in t which is not a variable binding, the element at
ti is equal to the element at that position in t′. To put it more succinctly,
ti = t′i for all i where ti is not a variable binding.

If a tuple does not fulfill these conditions it is not selected. If no tuple in the
tuplespace fulfills the conditions then the process is blocked until the tuplespace
acquires such a tuple. The result of the match function is a binding of variable
names to values according to the variables position in the tuple. To give an
example of this, suppose we have the following net:
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match(〈〉; 〈〉) = id

match(〈t1, · · · , tk〉; 〈t′1, · · · , t′k〉) = let θ = case t1of
` : if t1 = t′1 then id else fail
!x : [t′1/x]

in θ ◦match(〈t2, · · · , tk〉; 〈t′2, · · · , t′k〉)

Figure 6.4: KLAIM Pattern Matching of Templates against Tuples.

YellowPages::<John, 352468>
|| Sally::read(John, !phonenr)@YellowPages

The process at locality Sally will match the tuple of the read operation, (John,
!phonenr) against the tuple 〈John, 352468〉 at the YellowPages locality. Since
the first element matches, and the only other element is a variable binding, the
tuples match and the value 352468 is bound to the variable phonenr that can
then be used in the continuation of the process at locality Sally.

6.3 Implementation

The KLAIM implementation was written in C# using Visual Studio 2008 as
the development environment. It implements the subset of KLAIM described
in Section 6.2. KLAIM contains a number of features not available in the PLR,
some of these were implemented as syntax tree nodes for the PLR syntax tree
while others were implemented in a KLAIM runtime library. The PLR syntax
tree nodes for action prefixing, the nil process, parallel composition and nonde-
terministic choice were used without modification. Expression nodes (constants,
variables, arithmetic expressions) could also be re-used so right away the im-
plementation had a number of building blocks ready for use. The main focus
was then on the things that differentiate KLAIM from other process languages:
its syntax, replication and tuplespaces with their associated in, out and read
actions. Each of these is described in the following sections.

6.3.1 Replication

Replication is a construct which was quite tricky to implement according to
specification. As we saw in Figure 6.2 the congruence of replication is defined
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as

l :: ∗P ≡ l :: P | ∗P

so essentially a replicated process is equal to infinite instances of that process
running in parallel. For obvious reasons the implementation can not create
infinite instances so another solution was needed that mimicked this behavior
as closely as possibly. A number of possible approaches were considered for this
problem.

The naive approach is to let the replicated process simply keep spawning new
instances of itself endlessly. The way this could be implemented is by having
a small delay between each instantiation of the process, to avoid using up all
available memory instantly. This still has the problem of overshadowing ev-
erything else that is going on in the system. Consider the case where the first
action of a replicated process is an out action, e.g. out(X,Y, Z)@Loc. Over
time the Loc locality will fill up with 〈X,Y, Z〉 tuples, making visualization of
the net difficult as well as following what actions are happening. This could be
partially alleviated by showing tuples that are identical as just one tuple with a
number indicating how many of them there are, but that is still a hack to cover
for an inadequate solution.

Another approach could be to change the semantics of replication to that of
repetition. That is, instead of defining a replicated process as

l :: ∗P ≡ l :: P | ∗P

it could be defined as

l :: ∗P ≡ l :: P. ∗ P

This is certainly possible to implement and is somewhat similar to replication.
There are many ways in which it is different though and some hard questions
are raised. What should happen to variables that are bound in P , are their
values carried on into the next iteration of P , or does the next iteration start
with the original values (or lack of values) of those variables? Another concern
is that if P blocks on an action at any point then no new instances of P are
spawned until the original instance of P continues and finishes.

The third approach would be to replace infinity with a set number. Instead of
having infinite instances of P the system would instead have n instances, and
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n could be configured, for instance with a command line switch. The problem
with this is that it turns a behavior that is supposed to continue forever into
a behavior that ends at a particular time, that is when all n instances have
finished.

A fourth approach is to spawn new instances of the process only when needed
so that it appears as though there is an infinite amount. The objective is to
simulate infinite processes with as few processes as possible, in order to do that
it is important to realize where infinite processes give the same result as a single
process:

1. When a process P is blocked doing an in action, it does not matter whether
one instance is blocked or many. The only difference is when an instance
becomes unblocked, if there was just one to begin with then no instance
is blocked at that action any longer, but if there were n instances blocked
there are now n − 1 instances blocked. This implies that if there was
just one instance blocked, and another instance was spawned as the first
instance unblocked then that would give the same result as having infinite
instances blocked.

2. Since read actions do not change the state of tuplespaces in any way, it
can be assumed that having one instance of P perform a read action or
having infinite instances of P perform the action would have the same
effect on the state of the tuplespaces, that is, not affect them at all.

3. Mimicking the out operation is a little more tricky than the other two.
Clearly there is a difference between one process performing an out action
and multiple processes performing the same action. If multiple processes
perform the action then there will be multiple copies of the same tuple
(or rather multiple tuples with the same value) at the tuplespace that the
action was performed at (ignoring possible differences in variable values).
So from the perspective of looking at the tuplespace there clearly is a
difference. However, if we consider how this affects the overall system, the
behaviour of other processes, then the difference is only apparent when
other processes start removing those tuples from the tuplespace. If only
one process outputs a tuple t then the next process that tries to remove
it will be successful but any subsequent process that tries to remove it
will block. However if there were multiple copies of t then no process
trying to remove it would block. A possible way to mimic this would be
to track each tuple that is output by a replicated process, and if that
tuple is removed by another process then a new instance of the replicated
process can be spawned which will output a new identical tuple t at the
tuplespace, allowing more processes to sucessfully perform an in action at
that tuplespace.
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The first attempt at replication tried to use the approach of simulating infinite
processes by spawning new instances at certain points in the program. After
quite a lot of time had been spent implementing that in a satisfactory way, a
number of problems became obvious. These include:

1. When the replicated process starts with a read action which does not
block, followed by an out action that uses variables bound by the previous
action, then enough processes must be spawned to account for all possible
variations that might have happened. Consider the following net:

Loc::<A,1>
|| Loc::<A,2>
|| Loc::<A,3>
|| Loc::* read(A, !nr)@Loc . out(B, nr)@OtherLoc

The selection of tuples when more than one match the template is non-
deterministic, so the variable nr might be bound to either 1, 2 or 3. Were
this done with infinite processes then all of the possibilities would be bound
and so the end result would be that OtherLoc ended up having at least
one instance of each of the tuples 〈B, 1〉, 〈B, 2〉 and 〈B, 3〉. To successfully
mimic this behaviors would require the program to constantly generate
all combinations of what might happen during read actions. This quickly
gets complicated, especially when many read actions occur in a row.

2. When there is a non deterministic choice between two or more processes,
then it would be necessary to make at least one process take each of the
paths, since if there were infinite processes making that choice then surely
at least one of them would take each offered choice.

3. Timing issues further complicate matters. Consider the following fragment
of a net:

Loc::* read(!x)@Loc . in(x, !y)@OtherLoc

In the solution suggested above a new process would be spawned when the
in action would complete. That process would start by reading x at the
locality Loc. But if the previous in action was blocked for some amount
of time then the contents of Loc might have been changed one or more
times in that period. That implies that a process that was spawned after
the in action was completed might read a different value of x at Loc than
it would have if the two processes were actually started in parallel.
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After considering these problems as well as some other exceptions and corner
cases it became apparent that mimicking replication in a general way was not
feasible. Instead it was implemented in a restricted way, by requiring that every
replicated process starts with an in action. The replicated process itself can
then only be an action prefix process, it cannot be a parallel composition or non
deterministic choice between processes. It can however start by performing an
in action and then turn into a parallel composition or non deterministic choice.
The initial in action serves as a guard that blocks until a tuple is available, and
as soon as it is unblocked it spawns a new instance of the replicated process. It
is intuitively clear that this does in fact preserve the congruence of replication, if
there were infinite processes then how many of them would start running would
depend on the number of tuples that matched the initial in action, by spawning
a new process whenever the first in action has completed the same behavior
occurs.

The semantics of this restricted form of replication are then

∗a.P a→ P | (∗a.P ) where a is an in action

which means that as soon as a has been performed a new ∗a.P is started. A
replicated process can be thought of like a server process, it waits until a tuple
matching a particular template is available, and then removes it, starts the
following process and keeps waiting for a new tuple that matches the template.
This is much like how a server works, for instance a webserver that waits for
incoming connections, when one is made it starts a worker thread to handle it
and keeps listening for further connections.

Other patterns can be simulated within this restricted form, by having a locality
whose sole purpose is to contain tuples that start a particular replicated process.
Repetition, where one instance of a process finishes before the next instance is
started could for example be modelled as

StartProc::<1>
|| Loc::* in(!start)@StartProc . out(X)@Y ... (other actions)
... . out(1)@StartProc

and starting a fixed number n of processes could be done by having n tuples in
the initial net that match the initial action, for example

StartProc::<1> || StartProc::<2> || StartProc<3>
|| Loc::* in(!start)@StartProc ....
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would immediately start three instance of the process since three matching tu-
ples are available at StartLoc.

Implementing this was done by creating a new syntax node, ReplicatedProcess.
That becomes one class, R, in the compiled file, and the inner process, P ,
starting with the in action, becomes another class. What R does at runtime is
to create a new instance of P , give it a reference to itself and call its RunProcess
method which runs it on a new thread. It then goes into an infinite loop, which
has two steps:

1. Suspend the thread that it (R) is running on

2. Once it wakes up, create and start a new instance of P and go to the top
of the infinite loop.

What P does is perform its initial in action, which might block for a while but
once the action is finished it checks whether it has a reference to a replicated
process, and if it does then it re-activates the thread that the replicated process
is running on (which causes the replicated process to continue in its infinite
loop). P then continues as normal and is not required to do anything else
related to the replication.

6.3.2 Tuplespaces

The tuplespaces of KLAIM are implemented in the KLAIM runtime library. The
library consists of just four classes, Net, Locality, Tuple and KLAIMException.
Figure 6.5 shows a class diagram of the runtime library.

• The Net class represents the entire program, or net, being executed. It
does very little itself and only contains a collection of Locality instances
as well as methods to add and delete them.

• The Locality class has a name and a collection of tuples, which represents
its tuplespace. The in, out and read actions are implemented as member
methods of this class, this seemed a natural fit since this class holds the
tuples. It also contains some convenience methods not available to KLAIM
itself, such as methods to check in a non-blocking way if a tuple exists and
retrieve a random tuple from the tuplespace.

• The Tuple class represents a tuple. As such it holds an ordered collection
of items (integers or strings). It also contains the Matches method, this
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Figure 6.5: KLAIM runtime library classes

method implements the template matching against tuples described in
Section 6.2.4.

• KLAIMException is a trivial class which just inherits from System.Exception
and whose only purpose is to allow callers to catch a KLAIM specific
exception instead of a general one.

As seen in these class descriptions, the implementation of tuplespaces is handled
by these four classes, Net holds Locality instances, they hold collections of Tuple
instances and the methods to access them, and the Tuple class implements the
pattern matching.

The tuples initially contained in each locality’s tuplespace need to somehow be
put in their place before execution of the net starts. This is an activity that
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does not really fit into the abstract syntax tree in any particular place. To
accomplish this the KLAIM compiler subscribes to the event MainMethodStart
of the ProcessSystem object, which is the root node of the syntax tree. Then
when the syntax tree is compiling itself and is starting to compile the entry
method of the program, it raises this event and passes as an event argument the
CompileContext class. It contains an initialized ILGenerator for the main method,
so the KLAIM compiler can then inject its tuplespace initialization code directly
into the start of the main method, before any processes are activated.

6.3.3 In, Out and Read actions

As we saw in the previous section, the runtime methods for these actions are
members of the Locality class in the runtime library. However, that is only part
of their implementation, before they can be used someone has to generate the
bytecode to call these methods at the appropriate places. For that purpose there
are three new syntax tree nodes, InAction, OutAction and ReadAction. These
inherit from the Action node from the PLR, and so can be used as children of
the PLR’s ActionPrefix syntax tree node. These three nodes compile themselves
into bytecode that gets the correct locality from the net, and then calls the
correct method on that locality. These new action have Expression nodes as
children which represent the items in the tuple. One new expression node was
added, VariableBinding, other nodes needed were already a part of the PLR.

There is one special case for the out action. That is if the locality being output
at is named Screen. In that case the tuple is not stored anywhere, its values are
just printed to the screen. For example the action

out(ResultOfExpression, 3+5)@Screen

would produce the output

ResultOfExpression, 8

on the users screen.

6.3.4 Class overview

Here we quickly go over the main classes used in the KLAIM compiler itself.
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LOCALITY = [A-Z][A-Za-z0 -9]*
VARIABLE = [a-z][A-Za-z0 -9]*
VARBINDING = ![a-z][A-Za-z0 -9]*
NUMBER = [0-9]+

Figure 6.6: Terminals of KLAIM scanner

• Program is the main class which parses the command line, validates the
given parameters and instantiates the parser. It then gets the syntax tree
back from the parser (given that no syntax errors occurred) and instructs
the syntax tree to compile itself.

• Scanner is the lexer class whose responsibility it is to tokenize a KLAIM
source code file into valid KLAIM terminals. Figure 6.6 shows the more
complicated terminals of KLAIM defined by regular expressions. The sim-
pler terminals, who are just string constants, are given directly in quotes
in the parser definition.

• Parser is a recursive-descent parser for KLAIM. The parser constructs a
PLR abstract syntax tree as it parses, using both the built in PLR syntax
tree nodes and the additional KLAIM syntax tree nodes described below.
As with the CCS parser and lexer, this class as well as the Scanner class are
generated with help from the Coco/R [25] parser generator. The Extended
Backus-Naur Form (EBNF) description of the full syntax, which is used
as input to Coco/R, is shown in Figure 6.7.

• InAction, OutAction and ReadAction are syntax tree nodes for the in, out
and read operations, respectively. They are stored in the compiler rather
than the runtime library since they are only needed at compile time.

• VariableBinding is a syntax tree node which inherits from Expression and
represents the binding of a value from a tuple to a variable.

6.4 KLAIM invoice system example

The preceding sections in this chapter have only presented small snippets of
KLAIM code. To get a clearer view of what an actual system modeled in
KLAIM might look like, an invoice system example is shown in Figure 6.8, and
explained further below. We begin by looking at the localities in the system:

• Inbox is a locality which contains invoices that have just arrived at the
company which the net represents. The Inbox contains no processes, it
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KLAIM =
LocatedItem { "||" LocatedItem }

LocatedItem =
LOCALITY "::" (Tuple | Process)

Tuple =
"<" Constant { "," Constant } ">"

Constant =
LOCALITY | NUMBER

Process =
["*"] NonDeterministicChoice

NonDeterministicChoice =
ParallelComposition { "+" ParallelComposition }

ParallelComposition =
ActionPrefix { "|" ActionPrefix }

ActionPrefix =
Action [ "." ActionPrefix
| "(" Process ")"
| "nil"

Action =
OutAction | InOrReadAction

OutAction =
"out"
"(" OutParam { "," OutParam } ")"
"@" (LOCALITY | VARIABLE)

OutParam =
LOCALITY | Expression

InOrReadAction =
("in"|" read")
"(" InOrReadParam {"," InOrReadParam } ")"
"@" (LOCALITY | VARIABLE)

InOrReadParam =
LOCALITY | VARBINDING | Expression

Expression =
PlusMinusTerm { ("+"|" -") PlusMinusTerm }

PlusMinusTerm =
UnaryMinusTerm { ("*"|"/"|"\%") UnaryMinusTerm }

UnaryMinusTerm =
["-"]
(

"(" Expression ")"
|
NUMBER
|
VARIABLE

)

Figure 6.7: EBNF Productions of KLAIM
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Inbox :: <Incoming , Paper , OfficeSupplies , 200, John >

|| Inbox :: <Incoming , Printer , OfficeSupplies , 500, John >

|| Inbox :: <Incoming , Textbooks , BookShack , 100, Alice >

|| Ledger :: <Paid , Cake , 50, AlfredosBakery , Alice >

|| Budget :: <John , 2000>

|| Budget :: <Alice , 5000>

|| Secretary :: * in(Incoming , !item , !vendor , !amount ,

!person)@Inbox

. out(Received , item , vendor , amount)@person

|| Secretary :: * in(Denied , !item , !vendor , !amount , !person)@self

. out(Denied , item , vendor , amount)@vendor

|| John :: * in(Received , !item , !vendor , !amount)@self

.

(

out(Confirmed , item , vendor , amount , John)@Finance

+

out(Denied , item , vendor , amount , John)@Secretary

)

|| Alice :: * in(Received , !item , !vendor , !amount)@self

.

(

out(Confirmed , item , vendor , amount , Alice)@Finance

+

out(Denied , item , vendor , amount , Alice)@Secretary

)

|| Finance :: * in(Confirmed , !item , !vendor , !amount , !person)@self

. in(person , !budget)@Budget

. out(person , budget - amount)@Budget

. out(Paid , item , vendor , amount , John)@Ledger

Figure 6.8: Invoice system example in KLAIM
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is just a database for invoices. The invoices themselves are tuples which
contain five elements: a status tag, the item being ordered, the vendor
name, the price, and the name of the person who ordered the item. For
example the tuple 〈Incoming, Printer,OfficeSupplies, 500, John〉 is an
invoice that has the status Incoming, is for a printer that was ordered by
John from OfficeSupplies and cost 500.

• Ledger represents the general ledger of the company. Invoices end up there
after they have been confirmed and paid. Every invoice in the ledger
should have its status as Paid.

• The Secretary locality represents the company secretary who removes in-
voices from the Inbox and then sends them on to the person who ordered
the item in question, with a status tag of Received. Note here that the
process is replicated and starts with an in action, whenever an invoice
(tuple) is available at Inbox whose first element is the constant Incoming
a new instance of the Secretary process will be spawned. Also note how
the in action binds the variable person and then uses that as the locality
in the following action out(...)@person. Secretary also contains another
process running in parallel, this process reads in invoices with the status
Denied and then sends them back to the vendor that issued the invoice.

• The localities John and Alice are both employees of the company and
have the same process for receiving invoices. They are replicated like the
Secretary process so they start whenever a matching tuple lands in their
tuplespace. They read in the invoice and then have a choice where they
can either send it back to the secretary with the status Denied or send it
on to the finance department with the status Confirmed.

• Budget is a database of how much money each employee may spend on
outside purchases. It has entries for John and Alice and their current
budgets.

• Finally, Finance is the finance department of the company. It inputs Con-
firmed invoices from its tuplespace, then subtracts the amount spent from
the budget of the person who ordered the item. It does this by first re-
moving the appropriate tuple from Budget by matching on the name on
the invoice. It then outputs a new tuple with the current budget which is
a result of an evaluated expression, budget − amount. The process then
ends by adding the invoice to the Ledger with a status of Paid.

This example system shows how KLAIM can be used to model real world sys-
tems. Its high level of abstraction makes it useful for modeling for example
workflows without thinking about concrete implementations and technical is-
sues. Localities can be used as simply databases, such as the Budget, as actors,
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such as Secretary, or as both. This is for example the case with John and Alice,
they have processes that they follow, and those processes operate on data in the
self tuplespace which implies that they own the data. At runtime self simply
resolves to the name of the locality where the process is running.

6.5 Summary

The KLAIM compiler was mainly meant as a proof-of-concept that the PLR
could in fact be used and be useful for languages other than CCS. It serves as
a case study of how a new language can be implemented fairly quickly by using
the PLR as a foundation and adding compile time and/or runtime classes as
needed. Although the compiler does not implement the full KLAIM language,
it does implement a useful subset of it and could be used as a foundation for
adding extensions to, such as implementing AspectK [14]. Another possible
extension would be to add the possibility of calling .NET methods, this was not
done here as it had already been shown possible in the CCS implementation.

Practical aspects of the compiler (command line parameters, where to download,
license etc.) can be found in Appendix A.



Chapter 7

Interactive Process Viewer

In this chapter we look briefly at Process Viewer, a tool to interact with process
language applications during execution. Its architecture is explained, as well as
how it interacts with compiled process language executables. The challenges in
making it general enough for any process language are also discussed.

7.1 Overview

Process Viewer (hereafter referred to simply as the viewer) is an application to
allow users to closely monitor and affect how compiled process language appli-
cations are executed. It enables the user to see what processes are currently
active, what actions have been executed and what actions are ready for execu-
tion. It can be run interactively, which allows the user to select the next action
for execution. If the source code for the application being run is available, then
it is also possible to see the state of the system in source code form at every stage
(e.g. if the original system contained the process a . b . P and action a has been
executed then the system now contains the process b . P ). The user interface
is simple and consists of only one window. Figure 7.1 shows a screenshot of the
program during execution of a process language application. The list of active
processes is in the upper left of the screen, the trace is on the lower left. The
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current state of the system is shown in the large text box and under it the next
possible actions are shown, as well as some controls to select the action.

Figure 7.1: The Process Viewer application

7.2 Architecture

7.2.1 Class structure

The application is written in C# and is made up of just two main classes. Pro-
cessViewer is the class for the window itself and contains all the actions that
have to do with the graphical user interface. The other class is ProcessState-
Visualization which is responsible for keeping track of how the system looks in
source code form at every stage of the execution. Since most of what is done in
the program has to to with updating controls in the window it was not deemed
necessary to modularize the code further. The only real algorithm in the pro-
gram is how the process state is extracted from the running process language
application, that code was clearly not tied to the graphical user interface and
therefore it was put in its own class, the ProcessStateVisualization class.
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7.2.2 Interaction with the PLR

The process language application that is being executed is run in the same op-
erating system process as the process viewer itself. This is done by loading
the process language application assembly and simply calling its Main method
on a seperate thread. Doing it this way allows the viewer to interact directly
with the process language application and its classes. The interaction happens
mainly through the PLR’s Scheduler class. The scheduler has three useful events
that the process viewer subscribes to, ProcessRegistered, ProcessKilled and Tra-
ceItemAdded. These events notify subscribers when new processes are added to
the system, when processes are removed from the system, and when new items
are added to the trace, that is when actions have been executed. The process
viewer uses these events to update the controls that show active processes and
the trace.

To allow the user to select which action to execute the viewer makes use of a sim-
ple abstraction that the Scheduler class provides. The scheduler does not have a
special method to select an action from all the candidate actions, instead it has
a delegate (function pointer) to a method that takes in a list of CandidateAction
classes and returns the one that should be executed. This function pointer by
default points to a simple method that randomly chooses an action to execute,
but it can be set to any other method that has the correct method signature.
The viewer sets this function pointer to its own method, that method shows
each candidate action in the window and returns the one the user chooses. The
CandidateAction class contains information about an action and the process or
processes that perform it so the viewer has enough data to display to the user.

7.2.3 Process visualization

Showing the state of the process system after each step requires the original
source file. This is optional, if the source file is not available then the viewer
can still be used, but the system state in source code form will not be shown. The
names of the active processes, the trace and the candidate actions all work with
just the compiled executable though. The reason for this is that those things
can all be shown in a reasonable way using the class names and .ToString()
methods of the runtime classes whereas displaying the system in source code
form requires the abstract syntax tree, which is no longer available after the
application has been compiled.

This is further complicated by the fact that the viewer is not specific to a
particular process language, it is meant to work with any language that uses
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the PLR. The problem then becomes how can the viewer know which parser to
use to parse the abstract syntax tree from the provided source file. To solve
this the viewer has an associated configuration file which lists the filenames of
all assemblies that contain parsers. The parsers can then implement an IParser
interface that is provided by the PLR. The interface has a Parse method as
well as properties for the language name and the file extensions used by that
language. The viewer inspects the assemblies listed in the configuration file
and loads all classes that implement IParser. When a source file is selected the
viewer can then lookup the correct parser for it by filename extension and use
that parser to parse the file, or throw an error if no suitable parser is found. The
IParser interface also contains a property that returns a BaseFormatter instance
(previously discussed in Section 3.3.2) which can be used to get a source code
representation of the whole, or parts of, the abstract syntax tree.

Once the abstract syntax tree and an appropriate formatter for it are loaded
then the ProcessStateVisualization class can create a text representation of the
system by starting with the initial processes and then keeping track of which
actions are performed and removing the corresponding nodes from the syntax
tree. The formatter is then used on those parts of the syntax tree that are active
at a given time and the source code for those active processes is shown in the
large textbox in the main Process Viewer window.

The text representation of the system shown in the window is not exactly like
the original source code. Below is an example of how a process is displayed:

# CoffeeMachine@15:
# Parent chain: University+Parallel2@14: \ {coin, coffee}
coin . _coffee_ . CoffeeMachine

The first line shows that this is a process named CoffeeMachine and it has an
id of 15. The id is the thread id of the thread that the process runs on. The
next line shows the process’s parent chain, that is which process spawned it.
In this case we see that it was spawned by the second parallel branch of the
University process, and that the restrictions that apply are that coin and coffee
are hidden. If the parent chain were longer then additional ancestors would be
shown on the same line. Finally the third line shows the process as it looks now,
coin . coffee . CoffeeMachine. Once the coin action has been performed this
will change to read just coffee . CoffeeMachine.

There are a few limitations to this text representation. One is that it cannot
show process systems that contain if-then-else constructs. This is because
the program cannot figure out from the compiled executable which path has
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been taken in the conditional construct and it cannot evaluate the if condition
itself. The text representation also does not show non-deterministic choice and
parallel composition as they normally appear in source code form, instead it just
shows each of the process branches separately under the class names that they
are given in the executable, e.g. A+NonDeterministic1 and A+NonDeterministic2
are two branches in the same choice, even though they are not shown together
as one process.

7.3 Summary

The Process Viewer application is a useful tool for monitoring and interacting
with compiled process language applications. Due to the interoperability of
.NET the application can directly interact with running process language ap-
plications and show processes, traces and candidate actions. It also allows the
user to select which actions are executed in the process language application and
shows the state of the processes as they change. When creating and working
with process language applications the Process Viewer really helps the user to
understand and follow what is happening during execution.
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Chapter 8

Integrated Development
Environment

One of the biggest differences between academic programming languages and
industrial programming languages is the level of tool support. Academic lan-
guages traditionally are edited in text editors and compiled with command line
tools, while industrial languages usually have integrated development environ-
ments (IDE’s). These environments offer a wide range of features such as syntax
highlighting, instant visual warnings about syntax errors, background compila-
tion, automatic listing of available methods and variables (IntelliSense), built in
debuggers and refactoring. One of the goals of this project was to explore how
well the CCS language could be integrated into one of these environments and
how it could benefit from the features they have to offer. This chapter presents
the results of this exploration.

8.1 Choice of Integrated Development Environ-
ment

When choosing which IDE would be most suitable for CCS two environments
stood out, Microsoft Visual Studio 2008 and SharpDevelop. Eclipse was briefly
considered as well since it provides good plugin support, but was dismissed since
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it is built on Java and since this project is focused on integrating with the .NET
framework it seemed natural to go with a .NET development environment. Be-
low the two candidate environments are described and reasons given for choosing
one of them.

8.1.1 Microsoft Visual Studio 2008

Microsoft’s Visual Studio is the most popular environment for .NET develop-
ment. Visual Studio versions are released alongside new versions of the .NET
framework itself and each new version takes full advantage of and supports all
the new features in the .NET framework. The latest version as of this writing is
Visual Studio 2008 which supports the .NET framework 3.5. Visual Studio has
an extensive extensibility API based on COM technology, an older technology
for interaction between programs written in different programming languages.
Languages are integrated by creating language services, the Visual Studio pro-
gram itself is simply a host for these services. The languages that come with
the .NET Framework, C# and Visual Basic.NET have their own language ser-
vices that do not have any special access to Visual Studio, this implies that a
language service for a new language can be made to offer all the same features
as those supported by the built in languages. The downside of Visual Studio is
that its extensibility API is fairly complicated and hard to work with. Another
drawback is that even though there exist a fair number of samples for language
services, the professional level services for languages like C# and Visual Ba-
sic.NET are not available as open source so it is not possible to look at them
for inspiration.

8.1.2 SharpDevelop

The second candidate for a CCS development environment was SharpDevelop,
an open source IDE written entirely in C#. SharpDevelop is very similar to
Visual Studio in look and feel, and offers many of the same features. Its exten-
sibility API is entirely in .NET and is in many ways cleaner and clearer than
Visual Studio’s API. It also has the benefit of being open source software, so
it is easy to get a clearer picture of its architecture, and view the source for
other language services, even the built in ones for C# and Visual Basic.NET.
The architecture of SharpDevelop itself has even been the subject of a book,
[17]. The drawbacks are that its debugger is inferior to Visual Studio’s, the
application itself is slower, and it is not as well known as Visual Studio. It also
does not offer all the same features as Visual Studio, a notable feature that is
missing is the ability to highlight syntax errors as the user types in code.
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8.1.3 Chosen environment

After researching both environments, Visual Studio 2008 was chosen as the
one to implement CCS’s language service in. This was based primarily on the
fact that Visual Studio is the IDE of choice for most .NET developers, it is
fast, offers great debugging support and real time syntax checking. While the
standard versions of Visual Studio are not free, it is possible to download only
the Visual Studio shell and distribute it for free. The shell is the Visual Studio
program itself without any language services. This makes it possible to offer the
CCS development environment free of charge to anyone who wishes to use it.

8.2 Building a language service

8.2.1 Goal

The goal of this integration was to be able to use Visual Studio to manage
all aspects of working with the CCS language. To achieve that the following
features needed to be implemented:

1. CCS Projects. The ability to create new projects specifically for CCS
applications.

2. Syntax highlighting. To have different tokens of the language colored
differently so that it is easier to see and understand the structure of the
code.

3. Real time syntax checking. Display visual warnings about incorrect
syntax in the code as it is being written.

4. IntelliSense. Allow the developer to press a keyboard shortcut and get a
list of all available channel names, keywords, variable names and process
names in the current application, and insert them at the current location
in code.

5. Match braces. When working with large expressions it can be hard to
see which braces (parentheses, curly braces, angle brackets) match, and
missing parentheses are a common syntax error. Visual Studio can high-
light the matching braces automatically, if the language service provides
it with the necessary information about which braces match each other.



92 Integrated Development Environment

6. Build support. To be able to compile the code being written from within
Visual Studio, using its Build menu items and commands. A part of that
is being able to use Visual Studio’s built in mechanism to search for and
add references to other .NET assemblies that the application uses, and
pass those references to the compiler at compile time.

7. Debugger support. Launching the application after it had been built
and attaching the Visual Studio debugger to the running executable. Also
the ability to set breakpoints and step through the code as it is executing.

Visual Studio offers the front-end for all these features, that is the graphical user
interface to display them and the infrastructure that calls into the language
service’s code to get the data necessary for the features to work. However,
Visual Studio of course has no knowledge of specific languages and so it is
the responsibility of each language service to provide the back-end, the code
that understands the language, its tokens, its syntax, which items to display in
IntelliSense and so on. The implementation of these features is described in the
following sections.

8.2.2 Visual Studio API

The COM extensibility API for Visual Studio is fairly complicated and un-
friendly to use. It is also poorly documented. Fortunately Microsoft has re-
cently released a framework called the Managed Package Framework, or MPF
for short. This comes as part of the Visual Studio SDK (Software Development
Kit) and is a collection of .NET classes that wrap a lot of the underlying COM
interface, making it easier to work with in .NET languages. The MPF classes
implement much of the tedious boilerplate code which is necessary and com-
mon to all language services. Parts of the Managed Package Framework are
released only as source code and are meant to be included directly in language
service projects when they are being built. In the source code repository for
this project, these files have been marked specifically with a header stating that
they are supplied by Microsoft to avoid confusion about which code is original
work and which code is borrowed.

8.2.3 CCS Projects

To allow the user to create a new project of type CCS project four main things
needed to be implemented.
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1. A class named CCSProjectPackage, this class inherits from a ProjectPack-
age that is provided in the Managed Package Framework. It provides
information about the project file ending, the project name and a path to
the project templates described in item 4 in this list. It doesn’t contain
any real code, it only provides the necessary properties for Visual Studio
to recognize that a new type of project has been registered. To ensure
uniqueness of the package it has a globally unique identifier (GUID).

2. A class named CCSProjectFactory, this class inherits from a ProjectFactory
class from the Managed Package Framework. It also contains a globally
unique identifier and overrides only one method, CreateProject() which
returns a ProjectNode instance.

3. A class named CCSProjectNode. This class represents the project once
it has been created, it inherits from ProjectNode, again from Managed
Package Framework. In this class it is possible to override a lot of behavior,
such as what happens when build dependencies are added to the project,
which items can be deleted from the project, how to clean the project and
many more. This implementation did not require a lot of overrides, since
each project only contains one source file so most project possibilities are
simply not enabled.

4. Templates for the project needed to be created. The main template is
for the project file. The project file defines which items are included
and which MSBuild targets (see Section 8.2.8) should be used to build
the project. Another template is for a default CCS source file that is
included in every project, and contains some simple sample code to get
people started. Finally there is a file named CCS Project.vstemplate, this
contains some metadata about the templates and is the file used by Visual
Studio to determine which items to show when new projects are created.

In addition to these items that needed to be implemented, a lot of source code
from the Managed Package Framework is necessary to build the project package
successfully. These are standard implementations of a number of interfaces
Visual Studio requires, they can be overridden for more complex projects than
the CCS projects. It was surprising how much source code is needed to do a
relatively simple thing like creating a new project type.

8.2.4 Syntax Highlighting

Syntax highlighting is when different tokens in a language are given different
color to help differentiate them when looking at code. This is very helpful when
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public interface IScanner {
bool ScanTokenAndProvideInfoAboutIt (

TokenInfo tokenInfo , ref int s t a t e ) ;
void SetSource ( string source , int o f f s e t ) ;

}

Figure 8.1: IScanner interface

looking at code to quickly sense the structure and identify problems, and has
been a standard feature of development environments as well as most advanced
text editors for many years. In many common text editors this is simply imple-
mented as lists of tokens and colors for them. The Managed Package Framework
however requires that the language service provides an implementation of an in-
terface named IScanner, shown in Figure 8.1.

The SetSource method of the interface is called by Visual Studio and provides
the IScanner with one line of source code at a time, Visual Studio then repeat-
edly calls ScanTokenAndProvideInfoAboutIt to get information about each of the
tokens in that line. This is done on a line-by-line basis so that only lines that
change need to be re-colored, as it is a relatively expensive operation. For this
project the IScanner interface was implemented using a lexer class, how that
class was generated is described further in Section 8.2.5. The tokens of the
language were divided up into eight distinct color classes and colored as follows:

• Process constants - Greenblue

• Output actions on channels - Dark gray

• Method calls - Magenta

• Comments - Dark green

• Strings and class names - Maroon

• Keywords - Blue

• Numbers - Red

• All other tokens - Black

An example of the syntax highlighting can be seen in Figure 8.2.
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8.2.5 Real time syntax checking

A very useful feature of Visual Studio is its ability to show the user errors in
their code in real time, as they are typing. These errors (or warnings) are shown
both as text error messages in an error message window, as well as red curvy
lines under the places in code where the syntax errors occurs. This makes it
extremely easy to look at a page of code and determine whether it is syntactically
correct. Figure 8.2 shows an example of this feature in action.

Figure 8.2: Syntax checking for CCS in Visual Studio

The component in Visual Studio that is responsible for syntax highlighting and
syntax checking is named Babel [8]. As part of the Managed Package Framework
there is a collection of classes to wrap this component, these are called the
Managed Babel System. With the Managed Babel System come two programs
called MPLex.exe and MPPG.exe, these acronyms stand for Managed Package
Lex and Managed Package Parser Generator. These are .NET implementations
of the well known parser generator tools Lex and YACC and derive directly from
the Garden Point Parser Generator [13] developed at the Queensland University
of Technology. These tools take as input a lexer.lex file and parser.y file. The
lexer file defines the tokens of the language with regular expressions, and the
parser file describes the syntax of the language in extended Backus-Naur form,
or EBNF. From these input files MPLex.exe and MPPG.exe generate C# code
for a lexer and a parser for the language. A more detailed explanation of Lex



96 Integrated Development Environment

and YACC-like tools is outside the scope of this paper but a useful book on the
subject is [18].

Once the generated lexer and parser have been built, Visual Studio is respon-
sible for calling them repeatedly in the background while the user is typing
code. Visual Studio calls a method named ParseSource(ParseRequest req) which
is a method of the CCSLanguage class. That class inherits from BabelLanguage-
Service and overrides its ParseSource method. Inside this method the parser
and lexer are instantiated and parse the source code which is a part of the
ParseRequest instance passed to the method. The parser then logs every error
it encounters, with file name and line numbers, and Visual Studio is responsible
for displaying these errors to the user.

As we saw in Chapter 5 the parser used by the CCS compiler itself was written
using the Coco/R parser generator. It would have been preferable to re-use that
parser directly instead of defining a new parser for the same input language.
While it would have been possible, the fact is that MPLex.exe and MPPG.exe
are optimized for generating parsers that work well with the Managed Babel
System, and the Managed Babel infrastructure expects parsers and lexers that
conform to a certain interface. For that reason MPLex and MPPG were used
to create a new parser and lexer instead of re-using the existing ones. The
drawback to this is of course that two implementations of the same language
need to be maintained and kept in sync. However, the input language for both
these parser generators is based on EBNF syntax and so it is fairly trivial to
port from one to the other. In hindsight the best approach would have been to
use MPPG and MPLex for the CCS compiler as well as the language service.

8.2.6 IntelliSense

IntelliSense (or automatic word completion) is one of the most useful features
of Visual Studio. When the programmer presses the keyboard combination
CTRL+SPACE at some point in the source code, the environment shows a list of
items that the programmer might wish to insert at that point, and a description
of them. This includes (in CCS’s case) channel names, process names, imported
.NET method names and CCS keywords. If the programmer invokes IntelliSense
once the caret is positioned after a half completed word, such as cof and there
is only one candidate that starts with cof, namely the channel coffee, then the
word is completed automatically and the list of possibilities is not even shown.

This behaviour is implemented through two main classes, AuthoringScope and
Resolver. AuthoringScope is the class that is returned from the ParseSource
method we learned about in Section 8.2.5, part of its interface is the method Get-
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Declarations. This method is called when the user has pressed CTRL+SPACE
and it in turns calls a method named FindCompletions on the Resolver class,
which returns a list of all the items to display to the user, along with descrip-
tions and icons.

To create the list of items the resolver uses the generated scanner class we
discussed previously and scans all tokens in the source file to find process and
channel names. For every channel name it adds an item for the output action
and input action on that channel, e.g. both coffee and coffee . The resolver
also adds all the language keywords (if,then,use etc.) to the list so they can be
completed automatically, and to provide a reference for the user about what is
possible to do. Finally the resolver tries to find all methods that the application
could call, and add them along with descriptions that include parameter names
and types. To do this the resolver tries to look up all classes that are imported in
the source code using the use keyword, as well as look for methods in the class
PLR.Runtime.BuiltIns which contains methods that can be called without a use
statement. The method names and parameters are found through reflection.
Since the PLR only supports static methods and only strings and integers as
parameters, the resolver only considers methods that fulfill that criteria. Once
this has been done the list of names, keywords and methods is returned so that
Visual Studio can display them to the user. Figure 8.3 shows an example of
this feature in action. Note how different types of items have different icons to
distinguish them from each other.

Figure 8.3: IntelliSense for CCS in Visual Studio
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UnaryMinusTerm
: ’-’ UnaryMinusTerm
| NUMBER
| ’(’ Expr ’)’ { Match(@1 , @3); }
| LCASEIDENT
| KWTRUE
| MethodCall
| KWFALSE
;

Figure 8.4: Matching braces for expressions

8.2.7 Match braces

This feature was fairly trivial to implement as most of it is provided by the
Managed Package Framework. To get it working the generated parser needs to
store information about every matching parentheses pair while it is parsing the
source. This is simply done by calling a Match method in the parser definition.
Figure 8.4 shows how the brace matching for expressions is achieved in the
parser definition.

The macros @1 and @3 are converted when the parser is generated and mean
that the first and third token on the lines match. The only additional thing
needed to get the feature working was to check in the ParseSource method if
the reason for the parsing was to highlight braces, and if so then use the braces
found by the parser earlier and call a MatchPair method on the ParseRequest
object that was passed to the method. Figure 8.5 shows how this feature is
useful when working with large expressions.

Figure 8.5: Brace matching for CCS in Visual Studio

8.2.8 Build support

Visual Studio has menu items and keyboard shortcuts for a Build command.
This command is used to build (compile) the source files of the current project
into an executable file. The underlying system that does the actual building is
named MSBuild, and it is a command line build tool, similar to make which
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is commonly used on Unix and Linux platforms, and NAnt, an popular open
source build tool for the .NET framework. The input files for MSBuild are XML
files that define what the tool should do. The three most important elements in
these files are targets, tasks and properties.

A target is a particular action to take, for instance there can be a build target
which builds an entire project and a clean target which deletes all intermediate
files. Targets can depend on each other, for example a rebuild target can depend
on the clean and build targets, so that whenever rebuild is executed the tasks
it depends on are automatically executed first.

Tasks are the operations performed by the targets. Each task is usually a single
distinct action, for example one task might be to call a compiler, another task
might be to copy files. Tasks can take parameters, for instance the names of the
files to compile. Custom tasks can be written in .NET to achieve any operation
and integrate it into the build process.

Properties are essentially variables to use in the build process, and are often
passed as parameters to the tasks. A property might for instance be named
Debug and have either the value true or false. It could then be passed to a
task as a parameter.

Each language in Visual Studio has its own .targets files which defines all the
targets and tasks specific to that language. Additionally there is a common
targets file, Microsoft.Common.targets which all languages use. These .targets
files are then referenced in the project files for the languages. To get CCS
working with the build system it was necessary to create one custom task, to
call the compiler. The task is defined in a class named CompileTask which
inherits from MSBuild’s ToolTask class. It has an Execute method which calls
the CCS compiler and logs all errors that the compiler emits, and four properties
that can be set, Debug, InputFile, OutputFile and References. To make that task
available in Visual Studio the template CCS project file references a file called
CCS.targets. That file in its entirety is shown in Figure 8.6.

All that is necessary to do in the CCS.targets file is to create a target named
CoreCompile, and in that target call the custom compile task that was created
for the CCS compiler. Empty implementations of the targets CreateManifestRe-
sourceNames, Build and Compile are also provided, since otherwise these targets
try to perform actions that are not necessary for building CCS applications. The
Debug parameter can be set within Visual Studio and the names of the input
and output files are determined by the name given to the project when it is
created. References to other .NET assemblies can be added in Visual Studio
and they will be passed to the compile task through the References parameter.
Having the CCS project file reference the CCS.targets file, and that file call
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<?xml version=” 1 .0 ” encoding=” utf−8” ?>
<Pro j ec t Defau l tTargets=” Build ”

xmlns=” h t t p : // schemas . m i c ro so f t . com/ deve loper / msbuild /2003”>
<UsingTask TaskName=”CCS. BuildTasks . CompileTask”

AssemblyFi le=” $(CCS PATH)CCS. BuildTasks . d l l ”/>
<Target Name=”CoreCompile”>

<CompileTask
Debug=” $( DebugSymbols ) ”
OutputFile=”@( IntermediateAssembly ) ”
InputF i l e=”@( Compile ) ”
Re fe rences=”@( ReferencePath ) ”/>

</ Target>
<Target Name=” CreateManifestResourceNames ”></ Target>
<Target Name=” Build ”></ Target>
<Target Name=”Compile”></ Target>
<Import Pro j e c t=” $( MSBuildBinPath )\Microso f t .Common. t a r g e t s ” />

</ Pro j e c t>

Figure 8.6: The CCS.targets file
,

the custom compile task is enough to get full build support from within Visual
Studio.

8.2.9 Debugger support

Once the build support described in Section 8.2.8 is in place, getting debugger
support within Visual Studio is trivial. All that is needed is to select the Debug
configuration inside Visual Studio, this passes the paramater Debug=true to the
compile task and on to the compiler. We already saw how the PLR supports
emitting debugging symbols in Section 3.3.5. Pressing the F5 key, or the play
button, in Visual Studio will then build the project, launch the executable if the
build is successful and attach the debugger. This works due to the fact that the
Microsoft.Common.targets file defines a Run target that calls the CoreCompile
target (which CCS.targets defines) and then launches the debugger, this action
is the same for all languages, although the compile step itself may be different.

The only additional thing done to make the debugging experience more user
friendly was to implement a method named ValidateBreakpointLocation in the
CCSLanguage class. When the user tries to set a breakpoint on a particular line,
this method is called and is responsible for looking at the line and determining
whether a breakpoint can be set there, and if so, which part of the line should
be highlighted. For CCS the valid locations are actions, method calls, process
invocations and expressions in if statements. Using the generated Scanner



8.3 Summary 101

class once again, it is possible to find out which tokens are on a particular line
and return their locations if they are valid points for a breakpoint. Figure 8.7
shows how a breakpoint is highlighted. (Note that this is only relevant for the
highlighting done at compile time, at run time each line is highlighted according
to the sequence points in the actual compiled file.)

Figure 8.7: Setting breakpoints in Visual Studio

8.3 Summary

There is no doubt that the tool support for programming languages is a fac-
tor in whether those languages become popular, how productive programmers
are when working with them and how enjoyable they are to work with. Pro-
gramming languages used in industry have for a long time now had great tool
support while academic languages often suffer from bad or incomplete tools.
As this chapter demonstrates, this need not be the case. Once a programming
language (or any tool that takes some text files as input) has been developed,
taking the extra time to develop a language service for it can be very beneficial
to the end users of that language, and is relatively easy to do. One approach
might even be to develop the language service first, thus enabling the author to
benefit from it himself while writing the compiler. Visual Studio might not be
the perfect environment for all languages, but in any case it is a good idea for
the language author to research what environments are out there and evaluate
if one of them could be used to offer the end user of the language a better user
experience.
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Chapter 9

Final Considerations

The first and second chapters of the thesis presented the objectives and goals
of the project. They also introduced the subject matter, process algebras, their
purpose and structure and what they had in common. The .NET framework
was introduced, its history, relation to other virtual machine environments and
current status was discussed, as well as the benefits of using virtual machines
in general.

The third chapter then documented the design and implementation of the Pro-
cess Language Runtime itself. The PLR self-compiling syntax tree was explained
in detail and reasons given for why that was an optimal design for further ex-
tensibility. An overview of the PLR runtime classes was given, as well as an
insight into how debugging support is enabled in compiled process language ap-
plications. The chapter ended by explaining in detail the structure of a .NET
assembly compiled from the PLR syntax tree.

Chapter 4 presented a number of static analyses that are part of the PLR, both
classical data flow analyses and more specific analyses for process algebra. How
these analyses could be re-used for more than one process algebra, even when
they have different constructs, was also explained.

Chapters 5 and 6 documented two separate implementations of process algebras
using the PLR, the languages were CCS and KLAIM. The syntax and semantics
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of the languages was shown, as well as an overview of the most important classes
in their implementation. The chapter on KLAIM then explored how additional
features that are not included in the PLR could be added to new languages, by
using custom syntax tree nodes, PLR compilation events and runtime libraries.
Both chapters finished with sizable example systems to give an idea of what a
real application of these languages might be.

In chapter seven we looked at a graphical user interface tool that allows the
user to monitor and interact with running process language applications. The
challenges faced when integrating with the PLR were discussed as well as how
the program was kept general enough to work with any process language.

The eighth chapter was about how the CCS language was integrated into a
professional development environment, Visual Studio 2008. Some alternative
development environments were presented and reasons given for why Visual
Studio was chosen. A number of useful features were implemented in the Visual
Studio integration, including CCS project support, syntax highlighting, real-
time syntax checking, IntelliSense, brace matching and full integration with the
debugger and build tool.

Finally, in this chapter related work is discussed, including some alternative
implementations of CCS and KLAIM. We explore the potential future work
that could be done with the PLR, and end with some concluding remarks.

9.1 Related work

There are quite a few other projects that have implemented process algebras,
or languages inspired by process algebras, however most of these projects take
a different approach than that taken by the PLR. Below is a short summary of
some of the notable ones, especially those that focus on CCS or KLAIM.

KLAVA [4] is an implementation of KLAIM. It is a Java library which represents
the KLAIM constructs as Java classes. KLAIM applications can then be written
in Java using the KLAVA library. The main difference between KLAVA and the
PLR implementation of KLAIM (hereafter referred to as PLR KLAIM) is that
in KLAVA it is not possible to write the applications using the actual syntax of
KLAIM. KLAVA is a much more feature rich implementation of KLAIM than
PLR KLAIM, it supports nodes running on different machines, and additional
constructs such as non blocking input operations.

X-Klaim [3] (which stands for eXtended KLAIM) is another implementation of
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KLAIM from the authors of KLAVA. It is at a higher level of abstraction than
KLAVA and has its own syntax, which is a superset of the original KLAIM
syntax. X-Klaim code uses the KLAVA library as its runtime library, the X-
Klaim compiler compiles X-Klaim code down to Java code that uses the KLAVA
library. X-Klaim is similar to PLR KLAIM in that both have a KLAIM syntax
and both use a runtime library, the difference is that PLR KLAIM directly emits
bytecodes, whereas X-Klaim emits Java source code, which means that X-Klaim
code cannot be debugged using the original X-Klaim source files. X-Klaim is
feature rich and supports many constructs not in the original KLAIM.

AspectK is an aspect oriented version of KLAIM. Originally introduced in [14],
a full virtual machine for the language was subsequently developed in [2]. The
KLAIM subset used in AspectK is the same as that used in PLR KLAIM,
AspectK then adds aspects on top of that. The difference (aside from the
aspect orientation) is that AspectK has its own virtual machine, with bytecodes
for common process algebra tasks whereas PLR KLAIM uses an existing virtual
machine. An advantage of having a process algebra focused virtual machine is
that generated code can be smaller, since each bytecode instruction can perform
more work. The PLR does get a similar reduction in code size by generating
bytecodes that call methods defined in the PLR runtime library.

JACK [10] is a process algebra implementation written in Java. It is similar to
the PLR in that it aims to be a framework that can be used for implementing
different types of process algebra, although its main focus is Communicating Se-
quential Processes (CSP). The difference is that JACK, like KLAVA, represents
algebra constructs as Java classes, and the systems are written using Java code
instead of the native syntax of the process algebra being implemented. That is
to say, it is a framework, but not a compiler.

CCS has at least two implementations, in [9] a method is presented for how to
build a sound CCS interpreter by following the semantics of the language, and
[15] shows how the functional programming language Haskell can be used to
build a CCS interpreter with minimal amount of code. Both of these differ from
the PLR in that they are interpreters rather than compilers.

None of the above related work aims to do exactly what the PLR attempts,
which is to build compilers for process algebras that operate on the algebra’s
standard syntax and integrate tightly with an existing virtual machine. The
PLR is also the only one of these that explores how existing infrastructure
can be used to add features to process algebras, such as allowing CCS to call
.NET methods written in another .NET language. A further look at that topic
might prove interesting, specifically how it affects the original semantics of the
algebra being implemented, what side effects it might produce and what sort of
interesting things could be modeled in this way.
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9.2 Further work

The PLR could be improved and built upon in several ways. Here we will look
at some of them.

9.2.1 Additional process algebra constructs

Perhaps the most obvious improvement to the PLR would be to add support
for some of the constructs that are common in process algebras but are not
currently included in the PLR. This would make it even simpler to use the PLR
as the basis for implementing other process algebras. To get a sense of which
constructs would be most beneficial to add, we look shortly at two of the most
prominent process algebras, CSP and π-calculus, and what would be needed for
them to run on the PLR.

π-calculus was introduced in [24] and is described by its author as an extension
of CCS. There are many variants of π-calculus with additional features but the
core calculus has two noteworthy additions to CCS:

1. The match construct [a = b]P which compares the values of a and b and
behaves as P if they are equal but otherwise turns into the nil process. This
is simply a more restricted version of the if-then-else construct which
is already implemented in the PLR, the boolean condition is restricted to
equality comparison and the else branch is simply the nil process.

2. The generalization of channel and variable names. In π-calculus both
variable and channel names are seen simply as names, and can be passed
along channels as data. For example a process P could send the channel
name y to process Q, which could then send or receive on that channel.

P def= xy.y(j).0

Q def= x(z).z3.0

Here we see that P first outputs the name y on channel x. Process Q
receives the channel name on channel x, after which it substitutes z with
y and becomes y3 . 0. It then sends the value 3 on the received channel
and P accepts it and binds it to the name j.
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This could fairly easily be added to the PLR. At compilation time each
channel name being used could be checked to see whether it was defined
as a variable or not. If it had previously been defined as a variable then
the synchronization would happen on the channel whose name was stored
in the variable, if no variable with that name exists then the name of the
channel would be considered a constant. For example in the term x(z).z3
we see that z is bound in the first action, and so when we process the z3
action we know that we should use the name stored in z as opposed to
the literal name z. However in the term x(z).y3 we see that y has never
been bound as a variable and so when the y3 action is processed the literal
name y is used for the channel.

CSP is very similar to CCS. It can synchronize on channels, with or without
message passing, it uses action prefixing, restriction, choice and parallel com-
position. Its definitions of choice and parallel composition are a little bit more
complex than those of CCS. It also distinguishes between an inactive process,
which is called STOP and is equivalent to the nil process in CCS, and a SKIP
process which signals that a process has completed successfully. Finally, as its
name Communicating Sequential Processes suggests, it offers sequential compo-
sition of processes. We now look at how these differences might be implemented
in the PLR.

1. Implementing the SKIP process is trivial since it does nothing. The
main issue is distinguishing it from the STOP process, this can be done
by letting them output different text when they are invoked.

2. In CSP a distinction is made between internal non deterministic choice
(written P u Q) and external non deterministic choice (written P � Q).
External choice will synchronize with the first event offered by the en-
vironment, so in a.STOP � b.STOP it depends on which of a and b is
offered first. Internal non deterministic choice however can refuse to par-
ticipate in an event even though no alternative is offered. The current
implementation in the PLR is equivalent to CSP’s external choice, if an
event (or channel synchronization) is offered on one of the paths then it
will be taken. If two or more candidates are offered then the selection be-
tween them is made randomly. To enable a simulation of internal choice
it could be possible to add some randomness to whether or not an of-
fered channel synchronization is accepted. When the scheduler is finding
out which synchronizations are possible it calls a CanSyncWith method on
each candidate action. It could be possible to make that call randomly
return true or false, which would make sure that a path in an internal
choice was not forced to be taken, even if it was the only candidate for
synchronization.
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3. CSP also handles parallel composition in a slightly different way from
CSS. It defines two versions of parallel composition. The first one, which
is sometimes called interleaving is written as P ||| Q. Here P and Q run in
parallel and are independent of each other. They can interact but are not
forced to. This is equivalent to the PLR’s parallel composition construct.

The other type of parallel composition available in CSP is written as
P ||A Q or sometimes as P |[{A}]| Q. P and Q are said to be interface
parallel. Here A is a set of channel names that P and Q must synchronize
on, e.g. in P |[{a, b}]| Q the processes P and Q must synchronize with
each others on channels a and b. If one of them has arrived at an a or
b action it cannot continue until the other one is ready to synchronize
with it. This is similar to parallel composition with restriction in CCS,
e.g. (P | Q)\{a, b}. In that expression P and Q have to synchronize on a
and b because they are invisible from the outside and so for either process
the other process is the only candidate to synchronize with. It is slightly
different though because in CSP’s version the events a and b are not un-
observable from the outside. This could still be implemented much like
the CCS expression shown above, the channels a and b would be locally
scoped to the P |[{a, b}]| Q process so that no external processes could
participate in the synchronization, and the channels would be shown as
part of the trace of the system, which would not normally be done in an
expression like (P | Q)\{a, b}

4. Sequential composition is written as P ;Q, it is a process that behaves like
P until P terminates and then behaves like Q. This would be easy to
implement in the PLR, any finite process will end up as the nil process
(or the STOP or SKIP process in CSP), once the nil process has been
reached in P a new instance of Q could be instantiated and started.

In addition to these features, variants of CSP sometimes contain additional
features such as interrupts and timeouts which we shall not go into here.

9.2.2 Richer datatypes and expressions

The initial version of the PLR supports two types of variables, integers and
strings. For expressions it supports constants for integers, booleans and strings,
as well as simple arithmetic and relational operators for integers and logical
operators for booleans. One way to extend the PLR would be to add more
support for using other data types from .NET. An example would be to allow
passing of .NET objects through channels and calling instance methods on those
objects in the receiving process. This would require some additional syntax
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nodes for the PLR tree, an expression node for constructing a new object and a
node for a method call on an object (as opposed to a static method call which
is already supported). Other useful features to add might include support for
floating point numbers, string formatting and basic string expressions using the
+ operator.

9.2.3 Additional analysis

Another potential improvement would be to add additional analyses before com-
pilation. This is where the benefit of having a shared syntax tree for multiple
algebras becomes apparent, as many of the analyses could be re-used for mul-
tiple process algebras (although probably not all of them). This could include
common compiler optimization techniques such as constant propagation and
Very Busy Expressions analysis, or analyses more directly related to process
algebra, such as finding channels that are never used and identifying processes
that will always block.

9.2.4 Bi-similarity of processes

One of the interesting things that could be added, for CCS and maybe others,
would be an analysis to compare two processes and see if they are behaviorally
equivalent, also known as bi-similar. B-similarity is a congruence, if processes P
and Q are bi-similar then it means that if P is a component in a system then it
can be replaced with Q and the system will continue to work in the same way,
since P and Q exhibit the same behavior. This can for instance be used to write
a specification as a simple process expression and then write an implementation
for that specification. If the specification and implementation are bi-similar
then the implementation is a correct implementation of the specification. An
example could be the specification

CoffeeMachine def= coin . coffee . CoffeeMachine

and the implementation

CoffeeMachineImpl def= (CoinReceiver | CoffeePourer)\{pour}

CoinReceiver def= coin . pour . CoinReceiver

CoffeePourer def= pour . coffee . CoffeePourer
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Here we see that according to the specification of CoffeeMachine the observable
events are an endless stream of coin and coffee. This however tells us nothing
about how this machine is implemented. The second process CoffeeMachineImpl
is the implementation of this coffee machine, it is composed of two components, a
receiver for the coins and a component that pours the coffee. They communicate
between themselves on the pour channel. Since that channel is hidden (or
restricted) it is not observable from the outside, what is observable from the
outside is again an endless stream of coin and coffeee. In this trivial case it is
obvious that CoffeeMachineImpl is a valid implementation of CoffeeMachine.

Bi-similarity can be analyzed by converting a CCS process expression into a
labelled transition system, which is a state machine where the transitions be-
tween states are the actions performed in the process. Weak bi-simulation, or
observational equivalence, is perhaps the most interesting bi-simulation to ver-
ify. In general terms it states that if P and Q are weakly bi-similar then they
will behave exactly the same when observed from the outside, they will offer the
same synchronizations or events. However before and after these public events
they can perform any number of internal actions or τ actions which do not have
to match between the two processes since they do not affect their behavior as
seen from the outside.

The PLR syntax tree is a rich data structure and would be well suited for this
type of analysis. This might not be the type of feature that belongs in a process
algebra compiler, instead it might be incorporated into some kind of analysis
tool for CCS (or other process algebras) that could make use of the syntax tree
of the compiler and the parser and scanner of the CCS compiler.

This section has only briefly touched on the possibilities of verifying process
behavior using bi-simulation, for a more comprehensive explanation see [1].

9.3 Conclusions

The initial goal of this project was to explore how process algebras could fit in
with the .NET framework and how the constructs these algebras had in com-
mon could be abstracted into common building blocks that could be re-used
in many implementations. The implementations of two process algebras using
those building blocks was necessary to prove their generality. Integrating a pro-
cess algebra into Visual Studio was more of an afterthought, but once I started
on it I saw how useful it was, and how much more enjoyable it was to write
CCS in this integrated environment, and so I was inspired to explore exactly
how well the language could be integrated and what services were available.
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After finishing this project I believe that the .NET framework is a good platform
for implementing process algebras. The main benefit is the ease of interacting
with other .NET languages. It is easy to add additional features to a language
by writing runtime libraries in languages like C# and it is easy to make a
process algebra call into any arbitrary .NET assembly. Another great benefit
is being able to debug the compiled applications, and in general great tool
support in programs like Visual Studio. The built in API to emit bytecode is
well structured and easy to use, and the bytecode itself is well designed and
surprisingly readable once you have gotten used to it.

There are downsides to .NET as well. The only real support for concurrency is
by using threads. I had thought beforehand that there might be some low level
support for that in the actual bytecode but that was not the case. Threading can
only be done through the standard class library, using the Thread class, which
shows that the class library is at least as important as the virtual machine itself.
It is also my conclusion that while .NET is a good platform for implementing
process algebras, it is not specifically good for process algebras, it is more that
it is a good platform for implementing programming languages in general.

The fact that there exist other implementations of the CLI (Common Language
Infrastructure) specification is very useful. The PLR library, CCS compiler and
KLAIM compiler all work flawlessly on Mono, the CLI implementation that
runs on the Linux and Unix family of operating systems. The compiled process
applications also work on Mono without problems. I had expected that the
compilers and the PLR would work, since they are command line tools/libraries
and do not depend on the underlying operating system much, except for reading
and writing files. What I did not expect was that the Process Viewer application
would work, since it has a graphical user interface which uses the underlying
graphic system of the Windows operating system. To my surprise the Process
Viewer ran without any problems on Mono the first time I tried it. It is worth
noting that no special consideration was needed to support Mono, I simply wrote
the whole thing using .NET on Windows and once it was ready I compiled
and ran it with Mono 2.4.2 on an Ubuntu Linux 8.10 operating system and
it worked flawlessly. This means that the PLR is truly cross-platform, which
should make it accessible to more people, especially since many researchers in
computer science do not use the Windows operating system at all.

Building re-usable components for process algebras went very well. The PLR
takes care of a lot of the basic work that anyone implementing a process algebra
would otherwise have to do themselves. Not just the basic process algebra
constructs themselves, but also expression trees for arithmetic expressions, static
analyses, emitting debugging symbols, and helper methods for calling into .NET
code. An implementor can use this and focus his energy on what matters,
implementing specific constructs and emitting the bytecodes for them.
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Overall I consider the project a success, as it has resulted in two working process
algebra implementations (one of which is fully integrated into Visual Studio), a
graphical tool for working with compiled process language applications, as well
as the main software product: a library/compiler that can (and hopefully will)
be used by future implementers of other process algebras.
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Software

During the course of this project four distinct software packages were developed,
a CCS compiler, a CCS integration package for Visual Studio, a KLAIM com-
piler and the Process Viewer application. Here we look at the practical aspects
of this software, where it can be downloaded, how it is licensed and how it can
be built, configured and used.

A.1 Licensing and availability

All the software developed during this project can be downloaded from the
url http://einaregilsson.com/plr. The source code for the entire project is
available in a zip file. The binaries for each of the software packages can be
downloaded seperately.

The source code for the project is licensed under the General Public License
(GPL) v3.0. In brief, this allows anyone to download and modify the source or
use it as a basis for something else, as long as the source code for that modified
version is also made available under a GPL compatible license. For further
information see http://www.gnu.org/licenses/gpl.html.

http://einaregilsson.com/plr
http://www.gnu.org/licenses/gpl.html
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A.2 Source code

The source code is organized into two solutions and ten projects. They are as
follows:

• MSC is the solution for the compilers and runtimes.

– PLR is the project for the Process Language Runtime.

– CCS is the project for the CCS compiler.

– CCS.External is a project which contains utility functions writ-
ten in C# which can be called from CCS if the CCS.External.dll is
referenced during compilation.

– KLAIM is the project for the KLAIM compiler.

– KLAIM.Runtime is the project for the KLAIM runtime library.

– ProcessViewer is the project for the Process Viewer visualization
tool.

• CCS.Integration is the solution for Visual Studio Integration.

– CCS.BuildTasks contains MSBuild build tasks for the CCS com-
piler.

– CCS.LanguageService is the main integration project, it contains
the Visual Studio language service for CCS.

– CCS.Projects contains the Visual Studio package that allows CCS
projects to be created in Visual Studio.

– CCS.Deployment is a project that builds an installer for the entire
integration package.

The solutions and projects can be built using Visual Studio 2008, although that
is not required. The C# compiler and MSBuild build tool are included with the
standard .NET framework distribution, they are enough to build the projects.
To build the entire MSC solution, first add the location where MSBuild is stored
to the PATH environment variable, this can be done with

SET PATH=%PATH%;c:\Windows\Microsoft.NET\Framework\v3.5

The solution can then be built with the command

msbuild MSC.sln /p:Configuration=Debug /p:Platform="Any CPU"
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The .NET framework v3.5 is required to build both solutions. To build the
CCS.Integration solution it is necessary to have the Visual Studio 2008 SDK
installed.

A.3 CCS Compiler

The CCS compiler is an executable file named ccs.exe. It has one dependency
which is the PLR itself, it is in a file named PLR.dll. The compiler is a command
line tool and is invoked as

ccs.exe [options] <filename>

It accepts one input file (<filename>) and can accept a number of optional
command line switches ([options]). By default the generated executable file
will have the same name as the input file, except ending with .exe instead of
.ccs. The compiled file will have a dependency on the PLR for the runtime
system. To get a guide to the available command line options the compiler can
be invoked as ccs.exe /? . The output of that command is shown below:

CCS Compiler

Copyright (C) 2009 Einar Egilsson

Usage: CCS [options] <filename>

Available options:

/reference:<files> The assemblies that this program requires. It is

/r:<files> not neccessary to specify the PLR assembly.

Other assemblies should be specified in a comma

seperated list, e.g. /reference:Foo.dll,Bar.dll.

/optimize If specified then the generated assembly will be

/op optimized, dead code eliminated and expressions

pre-evaluated where possible. Do not combine this

with the /debug switch.

/embedPLR Embeds the PLR into the generated file, so it can

/e be distributed as a stand-alone file.

/debug Emit debugging symbols in the generated file,

/d this allows it to be debugged in Visual Studio, or

in the free graphical debugger that comes with the

.NET Framework SDK.

/out:<filename> Specify the name of the compiled executable. If

/o:<filename> this is not specified then the name of the input
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file is used, with .ccs replaced by .exe.

/print:<format> Prints a version of the program source in the

/p:<format> specified format. Allowed formats are ccs, html

and latex. The generated file will have the same

name as the input file, except with the format

as extension.

A.4 CCS Visual Studio Integration Package

The integration package for CCS can be downloaded as a MSI installer. To
start using the integration package simply follow the instructions in the installer
program, it will install the necessary files and register the language service with
Visual Studio.

After installing the integration package the following features will be added to
Visual Studio:

• When creating a new project there is an option named CCS Project.
Choosing this option creates a new project with the file ending .ccsproj
and includes references to the PLR and a CCS source code file with some
example code.

• The CCS project can be built using Visual Studio’s Build command or by
using the keyboard shortcut Ctrl+Shift+B.

• Any file that is edited in Visual Studio which has the file ending .ccs will
be handled by the language service, which will syntax highlight it and
warn about syntax errors.

• IntelliSense can be invoked in .ccs files by pressing Ctrl+Space.

• If the Debug configuration is chosen then a CCS system can be debugged
by pressing the “play” button, or by pressing F5.

The integration package can be uninstalled in the standard Windows Add/Re-
move programs dialog.
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A.5 KLAIM Compiler

The KLAIM compiler is an executable file named kc.exe. It has two dependen-
cies, the KLAIM runtime (KlaimRuntime.dll) and the PLR itself (PLR.dll).
The KLAIM compiler is very similar to the CCS compiler, it is a command line
tool that is invoked as

kc.exe [options] <filename>

It accepts one input file (<filename>) and can accept a number of optional
command line switches ([options]). The generated executable file will have
the same name as the input file, except ending with .exe instead of .klaim.
The command kc.exe /? will print out the available options and then exit.
The output of that command is shown below:

KLAIM Compiler

Copyright (C) 2009 Einar Egilsson

Usage: kc [options] <filename>

Available options:

/optimize If specified then the generated assembly will be

/op optimized, dead code eliminated and expressions

pre-evaluated where possible. Do not combine this

with the /debug switch.

/debug Emit debugging symbols in the generated file,

/d this allows it to be debugged in Visual Studio, or

in the free graphical debugger that comes with the

.NET Framework SDK.

/embedKLAIM Embeds the KLAIM runtime into the generated file,

/ek so it does not need to be distributed with the

executable.

/embedPLR Embeds the PLR into the generated file, so it does

/e not need to be distributed with the executable.

/out:<filename> Specify the name of the compiled executable. If

/o:<filename> this is not specified then the name of the input

file is used, with .ccs replaced by .exe.
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A.6 Process Viewer

The Process Viewer is an executable named ProcessViewer.exe. It requires
the PLR library, PLR.dll as well as any assemblies that contain parsers for the
languages being used. The filenames of the parser assemblies are specified in
the configuration file, ProcessViewer.exe.config. An example is

<add key="ParserAssemblies" value="CCS.exe;kc.exe"/>

Here there are two assemblies specified, their names seperated by a semicolon.

Figure A.1 shows the main screen, with the main controls labelled with numbers.
Below each number corresponding to a control is explained.

Figure A.1: The Process Viewer application running

1. The open button. Press this to open a new process language executable
file, and optionally its original source file.

2. Starts execution of the loaded process language application.

3. Starts execution of the loaded process language application in step mode.
This means that the user will select each action that is executed.
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4. Pauses execution. This will put a running application into step mode.

5. Stops execution of running application.

6. This is a list of all active processes at the current time.

7. The trace is the list of actions that have been executed.

8. This is a list of the actions that could potentially be executed next.

9. Pressing this button executes the currently selected action.

10. Pressing this button executes a random action.

11. Additional information about the selected action is displayed here.

12. The current state of the active processes is shown here, along with their
parent chains, that is the restricted processes that spawned them and are
kept alive so that the restrictions still apply.
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Appendix B

Generated bytecode

For those that are interested in the actual code generation that takes place in
the PLR, we now look at a sample system and its generated code. The system
we look at is the following:

use PLR.Runtime.BuiltIns

StartProc = ActionPrefix | NonDeterministicChoice

ActionPrefix = a . 0

ValuePassSend(x) = _a_(x+3 /:Rand(2)) . 0
ValuePassReceive = a(y) . 0

NonDeterministicChoice = _a_ . 0 + NDC2
NDC2 = b . 0

ParallelComposition = a . 0 | PC2 | 0
PC2 = b . 0

MethodCall = :Print("Hello") . 0
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Restrict = ( a . (d . 0)\ d ) \{a}

Relabel = ( a . (d . 0)[dnew/d] )[anew/a]

This system obviously is not a model of anything special, it is simply composed
to show the available features of the PLR, and the processes are named accord-
ingly, e.g. ActionPrefix and Restrict. In this appendix each activity type will
have its own section, where the relevant process is first shown in CCS and then
the generated bytecode is shown. The text representation of the bytecode was
generated using the CIL disassembler tool from Microsoft, ILDASM.

B.1 Header

The header of the CIL file is as follows:

// Microsoft (R) .NET Framework IL Disassembler. Version 3.5.21022.8
// Copyright (c) Microsoft Corporation. All rights reserved.

// Metadata version: v2 .0.50727
.assembly extern PLR
{

.ver 1:0:0:0
}
.assembly extern mscorlib
{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89 ) // .z\V.4..

.ver 2:0:0:0
}
.assembly disassemble.exe
{

.hash algorithm 0x00008004

.ver 0:0:0:0
}
.module disassemble.exe
// MVID: {A23EA4EB -468E-4E2B -A4CA -AA68D8C2320E}
.imagebase 0x00400000
.file alignment 0x00000200
.stackreserve 0x00100000
.subsystem 0x0003 // WINDOWS_CUI
.corflags 0x00000001 // ILONLY
// Image base: 0x00970000

B.2 Main method

The main method of the executable, which is the entry point, is as follows:
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// ================== GLOBAL METHODS =========================

.method public static int32 Main() cil managed
{

.entrypoint
// Code size 18 (0x12)
.maxstack 1
.locals init (class StartProc V_0)
IL_0000: newobj instance void StartProc ::. ctor()
IL_0005: stloc .0
IL_0006: call class [PLR]PLR.Runtime.Scheduler

[PLR]PLR.Runtime.Scheduler :: get_Instance ()
IL_000b: call instance void [PLR]PLR.Runtime.Scheduler ::Run()
IL_0010: ldc.i4.0
IL_0011: ret

} // end of global method Main

// =============================================================

B.3 StartProc

StartProc = ActionPrefix | NonDeterministicChoice

is compiled as follows:

.class public auto ansi beforefieldinit StartProc
extends [PLR]PLR.Runtime.ProcessBase

{
.method public specialname rtspecialname

instance void .ctor() cil managed
{

// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase ::. ctor()
IL_0006: ret

} // end of method StartProc ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 63 (0x3f)
.maxstack 2
.locals init ([0] class [PLR]PLR.Runtime.ProcessBase V_0 ,

[1] class [PLR]PLR.Runtime.ProcessBase V_1)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
IL_0006: nop
IL_0007: newobj instance void ActionPrefix ::. ctor()
IL_000c: stloc .0
IL_000d: ldloc .0
IL_000e: ldarg .0
IL_000f: call instance class [PLR]PLR.Runtime.ProcessBase
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[PLR]PLR.Runtime.ProcessBase :: get_Parent ()
IL_0014: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0019: ldloc .0
IL_001a: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_001f: nop
IL_0020: newobj instance void NonDeterministicChoice ::. ctor()
IL_0025: stloc .1
IL_0026: ldloc .1
IL_0027: ldarg .0
IL_0028: call instance class [PLR]PLR.Runtime.ProcessBase

[PLR]PLR.Runtime.ProcessBase :: get_Parent ()
IL_002d: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0032: ldloc .1
IL_0033: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_0038: ldarg .0
IL_0039: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_003e: ret

} // end of method StartProc :: RunProcess

} // end of class StartProc

B.4 ActionPrefix

ActionPrefix = a . 0

is compiled as follows:

.class public auto ansi beforefieldinit ActionPrefix
extends [PLR]PLR.Runtime.ProcessBase

{
.method public specialname rtspecialname

instance void .ctor() cil managed
{

// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase ::. ctor()
IL_0006: ret

} // end of method ActionPrefix ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 84 (0x54)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
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IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase
::Debug(string)

IL_0011: ldarg .0
IL_0012: ldstr "a"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string , class [PLR]PLR.Runtime.ProcessBase
,int32 , bool)

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: nop
IL_002c: ldarg .0
IL_002d: ldstr "Turned into 0"
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0037: leave IL_004d

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003c: pop
IL_003d: ldarg .0
IL_003e: ldstr "Caught ProcessKilledException"
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0048: leave IL_004d

} // end handler
IL_004d: ldarg .0
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0053: ret

} // end of method ActionPrefix :: RunProcess

} // end of class ActionPrefix

B.5 ValuePassSend and ValuePassReceive

ValuePassSend(x) = _a_(x+3 /:Rand(2)) . 0
ValuePassReceive = a(y) . 0

are compiled as follows:

.class public auto ansi beforefieldinit ValuePassSend_1
extends [PLR]PLR.Runtime.ProcessBase

{
.field assembly object x
.method public specialname rtspecialname

instance void .ctor(object x) cil managed
{

// Code size 19 (0x13)
.maxstack 4
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IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase ::. ctor()
IL_0006: ldarg .0
IL_0007: ldarg x
IL_000b: nop
IL_000c: nop
IL_000d: stfld object ValuePassSend_1 ::x
IL_0012: ret

} // end of method ValuePassSend_1 ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 125 (0x7d)
.maxstack 10
.locals init ([0] object x,

[1] class [PLR]PLR.Runtime.ChannelSyncAction V_1)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldfld object ValuePassSend_1 ::x
IL_000c: stloc .0
IL_000d: ldarg .0
IL_000e: ldstr "Preparing to sync now ..."
IL_0013: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0018: ldarg .0
IL_0019: ldstr "a"
IL_001e: ldarg .0
IL_001f: ldc.i4 0x1
IL_0024: ldc.i4.0
IL_0025: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string ,class [PLR]PLR.Runtime.ProcessBase ,
int32 , bool)

IL_002a: stloc .1
IL_002b: ldloc .1
IL_002c: ldloc .0
IL_002d: unbox.any [mscorlib]System.Int32
IL_0032: ldc.i4 0x3
IL_0037: ldc.i4 0x2
IL_003c: call int32 [PLR]PLR.Runtime.BuiltIns ::Rand(int32)
IL_0041: div
IL_0042: add.ovf
IL_0043: box [mscorlib]System.Int32
IL_0048: call instance void [PLR]PLR.Runtime.ChannelSyncAction

:: AddValue(object)
IL_004d: ldloc .1
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_0053: nop
IL_0054: nop
IL_0055: ldarg .0
IL_0056: ldstr "Turned into 0"
IL_005b: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0060: leave IL_0076

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_0065: pop
IL_0066: ldarg .0
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IL_0067: ldstr "Caught ProcessKilledException"
IL_006c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0071: leave IL_0076

} // end handler
IL_0076: ldarg .0
IL_0077: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_007c: ret

} // end of method ValuePassSend_1 :: RunProcess

} // end of class ValuePassSend_1

.class public auto ansi beforefieldinit ValuePassReceive
extends [PLR]PLR.Runtime.ProcessBase

{
.method public specialname rtspecialname

instance void .ctor() cil managed
{

// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase ::. ctor()
IL_0006: ret

} // end of method ValuePassReceive ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 96 (0x60)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0 ,

[1] object y)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "a"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x1
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string ,class [PLR]PLR.Runtime.ProcessBase ,
int32 , bool)

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: ldloc .0
IL_002c: ldc.i4 0x0
IL_0031: call instance object [PLR]PLR.Runtime.ChannelSyncAction

:: GetValue(int32)
IL_0036: stloc .1
IL_0037: nop
IL_0038: ldarg .0
IL_0039: ldstr "Turned into 0"
IL_003e: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
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IL_0043: leave IL_0059

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_0048: pop
IL_0049: ldarg .0
IL_004a: ldstr "Caught ProcessKilledException"
IL_004f: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0054: leave IL_0059

} // end handler
IL_0059: ldarg .0
IL_005a: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_005f: ret

} // end of method ValuePassReceive :: RunProcess

} // end of class ValuePassReceive

B.6 NonDeterministicChoice

NonDeterministicChoice = _a_ . 0 + NDC2
NDC2 = b . 0

are compiled as follows:

.class public auto ansi beforefieldinit NonDeterministicChoice
extends [PLR]PLR.Runtime.ProcessBase

{
.class auto ansi nested public beforefieldinit NonDeterministic1

extends [PLR]PLR.Runtime.ProcessBase
{

.method public virtual instance void
RunProcess () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 84 (0x54)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "a"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.0
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string ,
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class [PLR]PLR.Runtime.ProcessBase , int32 , bool)
IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: nop
IL_002c: ldarg .0
IL_002d: ldstr "Turned into 0"
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0037: leave IL_004d

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003c: pop
IL_003d: ldarg .0
IL_003e: ldstr "Caught ProcessKilledException"
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0048: leave IL_004d

} // end handler
IL_004d: ldarg .0
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0053: ret

} // end of method NonDeterministic1 :: RunProcess

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method NonDeterministic1 ::. ctor

} // end of class NonDeterministic1

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method NonDeterministicChoice ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 85 (0x55)
.maxstack 2
.locals init (class [PLR]PLR.Runtime.ProcessBase V_0 ,

class [PLR]PLR.Runtime.ProcessBase V_1)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
IL_0006: newobj instance void

NonDeterministicChoice/NonDeterministic1 ::. ctor()
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IL_000b: stloc .0
IL_000c: ldloc .0
IL_000d: ldarg .0
IL_000e: call instance class [PLR]PLR.Runtime.ProcessBase

[PLR]PLR.Runtime.ProcessBase :: get_Parent ()
IL_0013: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0018: ldloc .0
IL_0019: ldarg .0
IL_001a: call instance valuetype [mscorlib]System.Guid

[PLR]PLR.Runtime.ProcessBase :: get_SetID ()
IL_001f: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_SetID(valuetype [mscorlib]System.Guid)
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_002a: newobj instance void NDC2 ::. ctor()
IL_002f: stloc .1
IL_0030: ldloc .1
IL_0031: ldarg .0
IL_0032: call instance class [PLR]PLR.Runtime.ProcessBase

[PLR]PLR.Runtime.ProcessBase :: get_Parent ()
IL_0037: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_003c: ldloc .1
IL_003d: ldarg .0
IL_003e: call instance valuetype [mscorlib]System.Guid

[PLR]PLR.Runtime.ProcessBase :: get_SetID ()
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_SetID(valuetype [mscorlib]System.Guid)
IL_0048: ldloc .1
IL_0049: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_004e: ldarg .0
IL_004f: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0054: ret

} // end of method NonDeterministicChoice :: RunProcess

} // end of class NonDeterministicChoice

.class public auto ansi beforefieldinit NDC2
extends [PLR]PLR.Runtime.ProcessBase

{
.method public specialname rtspecialname

instance void .ctor() cil managed
{

// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase ::. ctor()
IL_0006: ret

} // end of method NDC2 ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 84 (0x54)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase
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::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "b"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string ,class [PLR]PLR.Runtime.ProcessBase ,
int32 , bool)

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: nop
IL_002c: ldarg .0
IL_002d: ldstr "Turned into 0"
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0037: leave IL_004d

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003c: pop
IL_003d: ldarg .0
IL_003e: ldstr "Caught ProcessKilledException"
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0048: leave IL_004d

} // end handler
IL_004d: ldarg .0
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0053: ret

} // end of method NDC2:: RunProcess

} // end of class NDC2

B.7 ParallelComposition

ParallelComposition = a . 0 | PC2 | 0
PC2 = b . 0

are compiled as follows:

.class public auto ansi beforefieldinit ParallelComposition
extends [PLR]PLR.Runtime.ProcessBase

{
.class auto ansi nested public beforefieldinit Parallel1

extends [PLR]PLR.Runtime.ProcessBase
{

.method public virtual instance void
RunProcess () cil managed

{
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.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 84 (0x54)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "a"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string ,class
[PLR]PLR.Runtime.ProcessBase , int32 , bool)

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: nop
IL_002c: ldarg .0
IL_002d: ldstr "Turned into 0"
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0037: leave IL_004d

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003c: pop
IL_003d: ldarg .0
IL_003e: ldstr "Caught ProcessKilledException"
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0048: leave IL_004d

} // end handler
IL_004d: ldarg .0
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0053: ret

} // end of method Parallel1 :: RunProcess

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method Parallel1 ::. ctor

} // end of class Parallel1

.class auto ansi nested public beforefieldinit Parallel3
extends [PLR]PLR.Runtime.ProcessBase

{
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.method public virtual instance void
RunProcess () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 25 (0x19)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
IL_0006: nop
IL_0007: ldarg .0
IL_0008: ldstr "Turned into 0"
IL_000d: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0012: ldarg .0
IL_0013: call instance void [PLR]PLR.Runtime.ProcessBase

::Die()
IL_0018: ret

} // end of method Parallel3 :: RunProcess

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method Parallel3 ::. ctor

} // end of class Parallel3

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method ParallelComposition ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 86 (0x56)
.maxstack 2
.locals init ([0] class [PLR]PLR.Runtime.ProcessBase V_0 ,

[1] class [PLR]PLR.Runtime.ProcessBase V_1 ,
[2] class [PLR]PLR.Runtime.ProcessBase V_2)

IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase+

:: InitSetID ()
IL_0006: newobj instance void ParallelComposition/Parallel1

::. ctor()
IL_000b: stloc .0
IL_000c: ldloc .0
IL_000d: ldarg .0
IL_000e: call instance class [PLR]PLR.Runtime.ProcessBase

[PLR]PLR.Runtime.ProcessBase :: get_Parent ()
IL_0013: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0018: ldloc .0
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IL_0019: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_001e: nop
IL_001f: newobj instance void PC2 ::. ctor()
IL_0024: stloc .1
IL_0025: ldloc .1
IL_0026: ldarg .0
IL_0027: call instance class [PLR]PLR.Runtime.ProcessBase

[PLR]PLR.Runtime.ProcessBase :: get_Parent ()
IL_002c: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0031: ldloc .1
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_0037: newobj instance void ParallelComposition/Parallel3 ::. ctor()
IL_003c: stloc .2
IL_003d: ldloc .2
IL_003e: ldarg .0
IL_003f: call instance class [PLR]PLR.Runtime.ProcessBase

[PLR]PLR.Runtime.ProcessBase :: get_Parent ()
IL_0044: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0049: ldloc .2
IL_004a: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_004f: ldarg .0
IL_0050: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0055: ret

} // end of method ParallelComposition :: RunProcess

} // end of class ParallelComposition

.class public auto ansi beforefieldinit PC2
extends [PLR]PLR.Runtime.ProcessBase

{
.method public specialname rtspecialname

instance void .ctor() cil managed
{

// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase ::. ctor()
IL_0006: ret

} // end of method PC2::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 84 (0x54)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "b"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string ,
class [PLR]PLR.Runtime.ProcessBase , int32 , bool)



B.8 MethodCall 135

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: nop
IL_002c: ldarg .0
IL_002d: ldstr "Turned into 0"
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0037: leave IL_004d

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003c: pop
IL_003d: ldarg .0
IL_003e: ldstr "Caught ProcessKilledException"
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0048: leave IL_004d

} // end handler
IL_004d: ldarg .0
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0053: ret

} // end of method PC2:: RunProcess

} // end of class PC2

B.8 MethodCall

MethodCall = :Print("Hello") . 0

is compiled as follows:

.class public auto ansi beforefieldinit MethodCall
extends [PLR]PLR.Runtime.ProcessBase

{
.method public specialname rtspecialname

instance void .ctor() cil managed
{

// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase ::. ctor()
IL_0006: ret

} // end of method MethodCall ::. ctor

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 86 (0x56)
.maxstack 8
IL_0000: ldarg .0



136 Generated bytecode

IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase
:: InitSetID ()

.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "Print (\" Hello \")"
IL_0017: ldarg .0
IL_0018: newobj instance void [PLR]PLR.Runtime.MethodCallAction

::. ctor(string ,
class [PLR]PLR.Runtime.ProcessBase)

IL_001d: call instance void [PLR]PLR.Runtime.ProcessBase
::Sync(class [PLR]PLR.Runtime.IAction)

IL_0022: nop
IL_0023: ldstr "Hello"
IL_0028: call void [PLR]PLR.Runtime.BuiltIns ::Print(object)
IL_002d: nop
IL_002e: ldarg .0
IL_002f: ldstr "Turned into 0"
IL_0034: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0039: leave IL_004f

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003e: pop
IL_003f: ldarg .0
IL_0040: ldstr "Caught ProcessKilledException"
IL_0045: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_004a: leave IL_004f

} // end handler
IL_004f: ldarg .0
IL_0050: call instance void [PLR]PLR.Runtime.ProcessBase

::Die()
IL_0055: ret

} // end of method MethodCall :: RunProcess

} // end of class MethodCall

B.9 Restrict

Restrict = ( a . (d . 0)\ d ) \{a}

is compiled as follows:

.class public auto ansi beforefieldinit Restrict
extends [PLR]PLR.Runtime.ProcessBase

{
.class auto ansi nested public beforefieldinit Inner
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extends [PLR]PLR.Runtime.ProcessBase
{

.method public static bool RestrictByName(
class [PLR]PLR.Runtime.IAction A_0) cil managed

{
// Code size 37 (0x25)
.maxstack 3
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: isinst [PLR]PLR.Runtime.ChannelSyncAction
IL_0006: brtrue IL_000d

IL_000b: ldc.i4.0
IL_000c: ret

IL_000d: ldarg .0
IL_000e: castclass [PLR]PLR.Runtime.ChannelSyncAction
IL_0013: stloc .0
IL_0014: ldloc .0
IL_0015: call instance string [PLR]PLR.Runtime.ChannelSyncAction

:: get_Name ()
IL_001a: ldstr "d"
IL_001f: call bool [mscorlib]System.String :: op_Equality(string ,

string)
IL_0024: ret

} // end of method Inner:: RestrictByName

.method public virtual instance class [PLR]PLR.Runtime.RestrictAction
get_Restrict () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: get_Restrict
// Code size 13 (0xd)
.maxstack 3
IL_0000: ldnull
IL_0001: ldftn bool Restrict/Inner:: RestrictByName(class

[PLR]PLR.Runtime.IAction)
IL_0007: newobj instance void [PLR]PLR.Runtime.RestrictAction

::. ctor(object , native int)
IL_000c: ret

} // end of method Inner:: get_Restrict

.method public virtual instance void
RunProcess () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 84 (0x54)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "d"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string , class
[PLR]PLR.Runtime.ProcessBase , int32 , bool)



138 Generated bytecode

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: nop
IL_002c: ldarg .0
IL_002d: ldstr "Turned into 0"
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0037: leave IL_004d

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003c: pop
IL_003d: ldarg .0
IL_003e: ldstr "Caught ProcessKilledException"
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0048: leave IL_004d

} // end handler
IL_004d: ldarg .0
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0053: ret

} // end of method Inner:: RunProcess

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method Inner ::. ctor

} // end of class Inner

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method Restrict ::. ctor

.method public static bool RestrictByName(class [PLR]PLR.Runtime.IAction
A_0) cil managed

{
// Code size 37 (0x25)
.maxstack 3
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: isinst [PLR]PLR.Runtime.ChannelSyncAction
IL_0006: brtrue IL_000d

IL_000b: ldc.i4.0
IL_000c: ret
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IL_000d: ldarg .0
IL_000e: castclass [PLR]PLR.Runtime.ChannelSyncAction
IL_0013: stloc .0
IL_0014: ldloc .0
IL_0015: call instance string [PLR]PLR.Runtime.ChannelSyncAction

:: get_Name ()
IL_001a: ldstr "a"
IL_001f: call bool [mscorlib]System.String :: op_Equality(string ,

string)
IL_0024: ret

} // end of method Restrict :: RestrictByName

.method public virtual instance class [PLR]PLR.Runtime.RestrictAction
get_Restrict () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: get_Restrict
// Code size 13 (0xd)
.maxstack 3
IL_0000: ldnull
IL_0001: ldftn bool Restrict :: RestrictByName(class

[PLR]PLR.Runtime.IAction)
IL_0007: newobj instance void [PLR]PLR.Runtime.RestrictAction

::. ctor(object , native int)
IL_000c: ret

} // end of method Restrict :: get_Restrict

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 103 (0x67)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0 ,

[1] class [PLR]PLR.Runtime.ProcessBase V_1)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "a"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string , class [PLR]PLR.Runtime.ProcessBase
, int32 , bool)

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: newobj instance void Restrict/Inner ::. ctor()
IL_0030: stloc .1
IL_0031: ldloc .1
IL_0032: ldarg .0
IL_0033: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0038: ldloc .1
IL_0039: ldarg .0
IL_003a: call instance valuetype [mscorlib]System.Guid

[PLR]PLR.Runtime.ProcessBase :: get_SetID ()
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IL_003f: call instance void [PLR]PLR.Runtime.ProcessBase
:: set_SetID(valuetype [mscorlib]System.Guid)

IL_0044: ldloc .1
IL_0045: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_004a: leave IL_0060

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_004f: pop
IL_0050: ldarg .0
IL_0051: ldstr "Caught ProcessKilledException"
IL_0056: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_005b: leave IL_0060

} // end handler
IL_0060: ldarg .0
IL_0061: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0066: ret

} // end of method Restrict :: RunProcess

} // end of class Restrict

B.10 Relabel

Relabel = ( a . (d . 0)[dnew/d] )[anew/a]

is compiled as follows:

.class public auto ansi beforefieldinit Relabel
extends [PLR]PLR.Runtime.ProcessBase

{
.class auto ansi nested public beforefieldinit Inner

extends [PLR]PLR.Runtime.ProcessBase
{

.method public static class [PLR]PLR.Runtime.IAction
RelabelAction(class [PLR]PLR.Runtime.IAction A_0) cil managed

{
// Code size 59 (0x3b)
.maxstack 4
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: isinst [PLR]PLR.Runtime.ChannelSyncAction
IL_0006: brtrue IL_000d

IL_000b: ldarg .0
IL_000c: ret

IL_000d: ldarg .0
IL_000e: castclass [PLR]PLR.Runtime.ChannelSyncAction
IL_0013: stloc .0
IL_0014: ldloc .0
IL_0015: call instance string [PLR]PLR.Runtime.ChannelSyncAction

:: get_Name ()



B.10 Relabel 141

IL_001a: ldstr "d"
IL_001f: call bool [mscorlib]System.String :: op_Equality(string ,

string)
IL_0024: brfalse IL_0039

IL_0029: ldloc .0
IL_002a: ldstr "dnew"
IL_002f: call instance void [PLR]PLR.Runtime.ChannelSyncAction

:: set_Name(string)
IL_0034: br IL_0039

IL_0039: ldloc .0
IL_003a: ret

} // end of method Inner:: RelabelAction

.method public virtual instance class [PLR]PLR.Runtime.PreProcessAction
get_PreProcess () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: get_PreProcess
// Code size 13 (0xd)
.maxstack 3
IL_0000: ldnull
IL_0001: ldftn class [PLR]PLR.Runtime.IAction Relabel/Inner

:: RelabelAction(class [PLR]PLR.Runtime.IAction)
IL_0007: newobj instance void [PLR]PLR.Runtime.PreProcessAction

::. ctor(object , native int)
IL_000c: ret

} // end of method Inner:: get_PreProcess

.method public virtual instance void
RunProcess () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 84 (0x54)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "d"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string , class
[PLR]PLR.Runtime.ProcessBase , int32 , bool)

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: nop
IL_002c: ldarg .0
IL_002d: ldstr "Turned into 0"
IL_0032: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0037: leave IL_004d
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} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_003c: pop
IL_003d: ldarg .0
IL_003e: ldstr "Caught ProcessKilledException"
IL_0043: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0048: leave IL_004d

} // end handler
IL_004d: ldarg .0
IL_004e: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0053: ret

} // end of method Inner:: RunProcess

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method Inner ::. ctor

} // end of class Inner

.method public specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 2
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

::. ctor()
IL_0006: ret

} // end of method Relabel ::. ctor

.method public static class [PLR]PLR.Runtime.IAction
RelabelAction(class [PLR]PLR.Runtime.IAction A_0) cil managed

{
// Code size 59 (0x3b)
.maxstack 4
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0)
IL_0000: ldarg .0
IL_0001: isinst [PLR]PLR.Runtime.ChannelSyncAction
IL_0006: brtrue IL_000d

IL_000b: ldarg .0
IL_000c: ret

IL_000d: ldarg .0
IL_000e: castclass [PLR]PLR.Runtime.ChannelSyncAction
IL_0013: stloc .0
IL_0014: ldloc .0
IL_0015: call instance string [PLR]PLR.Runtime.ChannelSyncAction

:: get_Name ()
IL_001a: ldstr "a"
IL_001f: call bool [mscorlib]System.String :: op_Equality(string ,

string)
IL_0024: brfalse IL_0039

IL_0029: ldloc .0
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IL_002a: ldstr "anew"
IL_002f: call instance void [PLR]PLR.Runtime.ChannelSyncAction

:: set_Name(string)
IL_0034: br IL_0039

IL_0039: ldloc .0
IL_003a: ret

} // end of method Relabel :: RelabelAction

.method public virtual instance class [PLR]PLR.Runtime.PreProcessAction
get_PreProcess () cil managed

{
.override [PLR]PLR.Runtime.ProcessBase :: get_PreProcess
// Code size 13 (0xd)
.maxstack 3
IL_0000: ldnull
IL_0001: ldftn class [PLR]PLR.Runtime.IAction Relabel

:: RelabelAction(class [PLR]PLR.Runtime.IAction)
IL_0007: newobj instance void [PLR]PLR.Runtime.PreProcessAction

::. ctor(object , native int)
IL_000c: ret

} // end of method Relabel :: get_PreProcess

.method public virtual instance void RunProcess () cil managed
{

.override [PLR]PLR.Runtime.ProcessBase :: RunProcess
// Code size 103 (0x67)
.maxstack 10
.locals init ([0] class [PLR]PLR.Runtime.ChannelSyncAction V_0 ,

[1] class [PLR]PLR.Runtime.ProcessBase V_1)
IL_0000: ldarg .0
IL_0001: call instance void [PLR]PLR.Runtime.ProcessBase

:: InitSetID ()
.try
{

IL_0006: ldarg .0
IL_0007: ldstr "Preparing to sync now ..."
IL_000c: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_0011: ldarg .0
IL_0012: ldstr "a"
IL_0017: ldarg .0
IL_0018: ldc.i4 0x0
IL_001d: ldc.i4.1
IL_001e: newobj instance void [PLR]PLR.Runtime.ChannelSyncAction

::. ctor(string , class
[PLR]PLR.Runtime.ProcessBase , int32 , bool)

IL_0023: stloc .0
IL_0024: ldloc .0
IL_0025: call instance void [PLR]PLR.Runtime.ProcessBase

::Sync(class [PLR]PLR.Runtime.IAction)
IL_002a: nop
IL_002b: newobj instance void Relabel/Inner ::. ctor()
IL_0030: stloc .1
IL_0031: ldloc .1
IL_0032: ldarg .0
IL_0033: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_Parent(class [PLR]PLR.Runtime.ProcessBase)
IL_0038: ldloc .1
IL_0039: ldarg .0
IL_003a: call instance valuetype [mscorlib]System.Guid

[PLR]PLR.Runtime.ProcessBase :: get_SetID ()
IL_003f: call instance void [PLR]PLR.Runtime.ProcessBase

:: set_SetID(valuetype [mscorlib]System.Guid)
IL_0044: ldloc .1
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IL_0045: call instance void [PLR]PLR.Runtime.ProcessBase ::Run()
IL_004a: leave IL_0060

} // end .try
catch [PLR]PLR.Runtime.ProcessKilledException
{

IL_004f: pop
IL_0050: ldarg .0
IL_0051: ldstr "Caught ProcessKilledException"
IL_0056: call instance void [PLR]PLR.Runtime.ProcessBase

::Debug(string)
IL_005b: leave IL_0060

} // end handler
IL_0060: ldarg .0
IL_0061: call instance void [PLR]PLR.Runtime.ProcessBase ::Die()
IL_0066: ret

} // end of method Relabel :: RunProcess

} // end of class Relabel
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